Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem3 Structured version   Visualization version   GIF version

Theorem fourierdlem3 39003
 Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem3.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem3
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 6565 . . . . 5 (𝑚 = 𝑀 → ((-π[,]π) ↑𝑚 (0...𝑚)) = ((-π[,]π) ↑𝑚 (0...𝑀)))
3 fveq2 6103 . . . . . . . 8 (𝑚 = 𝑀 → (𝑝𝑚) = (𝑝𝑀))
43eqeq1d 2612 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = π ↔ (𝑝𝑀) = π))
54anbi2d 736 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ↔ ((𝑝‘0) = -π ∧ (𝑝𝑀) = π)))
6 oveq2 6557 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
76raleqdv 3121 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
85, 7anbi12d 743 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
92, 8rabeqbidv 3168 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 fourierdlem3.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 ovex 6577 . . . . 5 ((-π[,]π) ↑𝑚 (0...𝑀)) ∈ V
1211rabex 4740 . . . 4 {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
139, 10, 12fvmpt 6191 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1413eleq2d 2673 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
15 fveq1 6102 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1615eqeq1d 2612 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = -π ↔ (𝑄‘0) = -π))
17 fveq1 6102 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1817eqeq1d 2612 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = π ↔ (𝑄𝑀) = π))
1916, 18anbi12d 743 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ↔ ((𝑄‘0) = -π ∧ (𝑄𝑀) = π)))
20 fveq1 6102 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
21 fveq1 6102 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2220, 21breq12d 4596 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322ralbidv 2969 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2419, 23anbi12d 743 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2524elrab 3331 . 2 (𝑄 ∈ {𝑝 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2614, 25syl6bb 275 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  -cneg 10146  ℕcn 10897  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  πcpi 14636 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator