Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fouriercn Structured version   Visualization version   GIF version

Theorem fouriercn 39125
 Description: If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function ( see fourierd 39115 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fouriercn.f (𝜑𝐹:ℝ⟶ℝ)
fouriercn.t 𝑇 = (2 · π)
fouriercn.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fouriercn.dv (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
fouriercn.g 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
fouriercn.x (𝜑𝑋 ∈ ℝ)
fouriercn.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fouriercn.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fouriercn (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝐺   𝑥,𝑇   𝑛,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝑇(𝑛)   𝐺(𝑛)

Proof of Theorem fouriercn
StepHypRef Expression
1 fouriercn.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 fouriercn.t . 2 𝑇 = (2 · π)
3 fouriercn.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
4 fouriercn.g . 2 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))
54dmeqi 5247 . . . . . 6 dom 𝐺 = dom ((ℝ D 𝐹) ↾ (-π(,)π))
6 ioossre 12106 . . . . . . . 8 (-π(,)π) ⊆ ℝ
7 fouriercn.dv . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
8 cncff 22504 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → (ℝ D 𝐹):ℝ⟶ℂ)
9 fdm 5964 . . . . . . . . 9 ((ℝ D 𝐹):ℝ⟶ℂ → dom (ℝ D 𝐹) = ℝ)
107, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐹) = ℝ)
116, 10syl5sseqr 3617 . . . . . . 7 (𝜑 → (-π(,)π) ⊆ dom (ℝ D 𝐹))
12 ssdmres 5340 . . . . . . 7 ((-π(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
1311, 12sylib 207 . . . . . 6 (𝜑 → dom ((ℝ D 𝐹) ↾ (-π(,)π)) = (-π(,)π))
145, 13syl5eq 2656 . . . . 5 (𝜑 → dom 𝐺 = (-π(,)π))
1514difeq2d 3690 . . . 4 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ((-π(,)π) ∖ (-π(,)π)))
16 difid 3902 . . . 4 ((-π(,)π) ∖ (-π(,)π)) = ∅
1715, 16syl6eq 2660 . . 3 (𝜑 → ((-π(,)π) ∖ dom 𝐺) = ∅)
18 0fin 8073 . . 3 ∅ ∈ Fin
1917, 18syl6eqel 2696 . 2 (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)
20 rescncf 22508 . . . 4 ((-π(,)π) ⊆ ℝ → ((ℝ D 𝐹) ∈ (ℝ–cn→ℂ) → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ)))
216, 7, 20mpsyl 66 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ ((-π(,)π)–cn→ℂ))
224a1i 11 . . 3 (𝜑𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)))
2314oveq1d 6564 . . 3 (𝜑 → (dom 𝐺cn→ℂ) = ((-π(,)π)–cn→ℂ))
2421, 22, 233eltr4d 2703 . 2 (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))
25 pire 24014 . . . . . 6 π ∈ ℝ
2625renegcli 10221 . . . . 5 -π ∈ ℝ
2725rexri 9976 . . . . 5 π ∈ ℝ*
28 icossre 12125 . . . . 5 ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ)
2926, 27, 28mp2an 704 . . . 4 (-π[,)π) ⊆ ℝ
30 eldifi 3694 . . . 4 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ (-π[,)π))
3129, 30sseldi 3566 . . 3 (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
32 limcresi 23455 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥)
334reseq1i 5313 . . . . . . . 8 (𝐺 ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞))
34 resres 5329 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞)))
3533, 34eqtr2i 2633 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) = (𝐺 ↾ (𝑥(,)+∞))
3635oveq1i 6559 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (𝑥(,)+∞))) lim 𝑥) = ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
3732, 36sseqtri 3600 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥)
387adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))
39 simpr 476 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
4038, 39cnlimci 23459 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((ℝ D 𝐹) lim 𝑥))
4137, 40sseldi 3566 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥))
42 ne0i 3880 . . . 4 (((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
4341, 42syl 17 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
4431, 43sylan2 490 . 2 ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
45 negpitopissre 24090 . . . 4 (-π(,]π) ⊆ ℝ
46 eldifi 3694 . . . 4 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ (-π(,]π))
4745, 46sseldi 3566 . . 3 (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → 𝑥 ∈ ℝ)
48 limcresi 23455 . . . . . 6 ((ℝ D 𝐹) lim 𝑥) ⊆ (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥)
494reseq1i 5313 . . . . . . . 8 (𝐺 ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥))
50 resres 5329 . . . . . . . 8 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥)))
5149, 50eqtr2i 2633 . . . . . . 7 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) = (𝐺 ↾ (-∞(,)𝑥))
5251oveq1i 6559 . . . . . 6 (((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)𝑥))) lim 𝑥) = ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5348, 52sseqtri 3600 . . . . 5 ((ℝ D 𝐹) lim 𝑥) ⊆ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥)
5453, 40sseldi 3566 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥))
55 ne0i 3880 . . . 4 (((ℝ D 𝐹)‘𝑥) ∈ ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
5654, 55syl 17 . . 3 ((𝜑𝑥 ∈ ℝ) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
5747, 56sylan2 490 . 2 ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
58 eqid 2610 . 2 (topGen‘ran (,)) = (topGen‘ran (,))
59 ax-resscn 9872 . . . . . . 7 ℝ ⊆ ℂ
6059a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
611, 60fssd 5970 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
62 ssid 3587 . . . . . . . 8 ℝ ⊆ ℝ
6362a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ)
64 dvcn 23490 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D 𝐹) = ℝ) → 𝐹 ∈ (ℝ–cn→ℂ))
6560, 61, 63, 10, 64syl31anc 1321 . . . . . 6 (𝜑𝐹 ∈ (ℝ–cn→ℂ))
66 cncffvrn 22509 . . . . . 6 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℝ–cn→ℂ)) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
6760, 65, 66syl2anc 691 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ–cn→ℝ) ↔ 𝐹:ℝ⟶ℝ))
681, 67mpbird 246 . . . 4 (𝜑𝐹 ∈ (ℝ–cn→ℝ))
69 eqid 2610 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069tgioo2 22414 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
7169, 70, 70cncfcn 22520 . . . . 5 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7260, 60, 71syl2anc 691 . . . 4 (𝜑 → (ℝ–cn→ℝ) = ((topGen‘ran (,)) Cn (topGen‘ran (,))))
7368, 72eleqtrd 2690 . . 3 (𝜑𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
74 fouriercn.x . . 3 (𝜑𝑋 ∈ ℝ)
75 uniretop 22376 . . . 4 ℝ = (topGen‘ran (,))
7675cncnpi 20892 . . 3 ((𝐹 ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))) ∧ 𝑋 ∈ ℝ) → 𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
7773, 74, 76syl2anc 691 . 2 (𝜑𝐹 ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑋))
78 fouriercn.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
79 fouriercn.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
801, 2, 3, 4, 19, 24, 44, 57, 58, 77, 78, 79fouriercnp 39119 1 (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  (,)cioo 12046  (,]cioc 12047  [,)cico 12048  Σcsu 14264  sincsin 14633  cosccos 14634  πcpi 14636  TopOpenctopn 15905  topGenctg 15921  ℂfldccnfld 19567   Cn ccn 20838   CnP ccnp 20839  –cn→ccncf 22487  ∫citg 23193   limℂ climc 23432   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-ditg 23417  df-limc 23436  df-dv 23437 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator