Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  footeq Structured version   Visualization version   GIF version

Theorem footeq 25416
 Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
footeq.x (𝜑𝑋𝐴)
footeq.y (𝜑𝑌𝐴)
footeq.z (𝜑𝑍𝑃)
footeq.1 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
footeq.2 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
Assertion
Ref Expression
footeq (𝜑𝑋 = 𝑌)

Proof of Theorem footeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . 3 (𝑥 = 𝑋 → (𝑍𝐿𝑥) = (𝑍𝐿𝑋))
21breq1d 4593 . 2 (𝑥 = 𝑋 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴))
3 oveq2 6557 . . 3 (𝑥 = 𝑌 → (𝑍𝐿𝑥) = (𝑍𝐿𝑌))
43breq1d 4593 . 2 (𝑥 = 𝑌 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴))
5 isperp.p . . 3 𝑃 = (Base‘𝐺)
6 isperp.d . . 3 = (dist‘𝐺)
7 isperp.i . . 3 𝐼 = (Itv‘𝐺)
8 isperp.l . . 3 𝐿 = (LineG‘𝐺)
9 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
10 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
11 footeq.z . . 3 (𝜑𝑍𝑃)
12 footeq.x . . . 4 (𝜑𝑋𝐴)
13 footeq.1 . . . 4 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
145, 6, 7, 8, 9, 10, 12, 11, 13footne 25415 . . 3 (𝜑 → ¬ 𝑍𝐴)
155, 6, 7, 8, 9, 10, 11, 14foot 25414 . 2 (𝜑 → ∃!𝑥𝐴 (𝑍𝐿𝑥)(⟂G‘𝐺)𝐴)
16 footeq.y . 2 (𝜑𝑌𝐴)
175, 8, 7, 9, 10, 12tglnpt 25244 . . . 4 (𝜑𝑋𝑃)
188, 9, 13perpln1 25405 . . . . 5 (𝜑 → (𝑋𝐿𝑍) ∈ ran 𝐿)
195, 7, 8, 9, 17, 11, 18tglnne 25323 . . . 4 (𝜑𝑋𝑍)
205, 7, 8, 9, 17, 11, 19tglinecom 25330 . . 3 (𝜑 → (𝑋𝐿𝑍) = (𝑍𝐿𝑋))
2120, 13eqbrtrrd 4607 . 2 (𝜑 → (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴)
225, 8, 7, 9, 10, 16tglnpt 25244 . . . 4 (𝜑𝑌𝑃)
23 footeq.2 . . . . . 6 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
248, 9, 23perpln1 25405 . . . . 5 (𝜑 → (𝑌𝐿𝑍) ∈ ran 𝐿)
255, 7, 8, 9, 22, 11, 24tglnne 25323 . . . 4 (𝜑𝑌𝑍)
265, 7, 8, 9, 22, 11, 25tglinecom 25330 . . 3 (𝜑 → (𝑌𝐿𝑍) = (𝑍𝐿𝑌))
2726, 23eqbrtrrd 4607 . 2 (𝜑 → (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴)
282, 4, 15, 12, 16, 21, 27reu2eqd 3370 1 (𝜑𝑋 = 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  ⟂Gcperpg 25390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator