MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Visualization version   GIF version

Theorem fodomfib 8125
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 9229 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomfib (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 6028 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
2 fdm 5964 . . . . . . . . . . . . 13 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
31, 2syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
43eqeq1d 2612 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
5 dm0rn0 5263 . . . . . . . . . . . 12 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
6 forn 6031 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
76eqeq1d 2612 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
85, 7syl5bb 271 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
94, 8bitr3d 269 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
109necon3bid 2826 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
1110biimpac 502 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
1211adantll 746 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
13 vex 3176 . . . . . . . . . . . 12 𝑓 ∈ V
1413rnex 6992 . . . . . . . . . . 11 ran 𝑓 ∈ V
156, 14syl6eqelr 2697 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐵 ∈ V)
1615adantl 481 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
17 0sdomg 7974 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1918adantlr 747 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
2012, 19mpbird 246 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2120ex 449 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
22 fodomfi 8124 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵𝐴)
2322ex 449 . . . . . 6 (𝐴 ∈ Fin → (𝑓:𝐴onto𝐵𝐵𝐴))
2423adantr 480 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵𝐵𝐴))
2521, 24jcad 554 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2625exlimdv 1848 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2726expimpd 627 . 2 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴)))
28 sdomdomtr 7978 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
29 0sdomg 7974 . . . 4 (𝐴 ∈ Fin → (∅ ≺ 𝐴𝐴 ≠ ∅))
3028, 29syl5ib 233 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅))
31 fodomr 7996 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3231a1i 11 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
3330, 32jcad 554 . 2 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵)))
3427, 33impbid 201 1 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  Vcvv 3173  c0 3874   class class class wbr 4583  dom cdm 5038  ran crn 5039  wf 5800  ontowfo 5802  cdom 7839  csdm 7840  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator