MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntpg Structured version   Visualization version   GIF version

Theorem fntpg 5862
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 5856 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
2 dmsnopg 5524 . . . . . . . . . 10 (𝐴𝐹 → dom {⟨𝑋, 𝐴⟩} = {𝑋})
323ad2ant1 1075 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑋, 𝐴⟩} = {𝑋})
4 dmsnopg 5524 . . . . . . . . . 10 (𝐵𝐺 → dom {⟨𝑌, 𝐵⟩} = {𝑌})
543ad2ant2 1076 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑌, 𝐵⟩} = {𝑌})
63, 5jca 553 . . . . . . . 8 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
763ad2ant2 1076 . . . . . . 7 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
8 uneq12 3724 . . . . . . 7 ((dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
97, 8syl 17 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
10 df-pr 4128 . . . . . 6 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
119, 10syl6eqr 2662 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
12 df-pr 4128 . . . . . . . 8 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1312dmeqi 5247 . . . . . . 7 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1413eqeq1i 2615 . . . . . 6 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
15 dmun 5253 . . . . . . 7 dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩})
1615eqeq1i 2615 . . . . . 6 (dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1714, 16bitri 263 . . . . 5 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1811, 17sylibr 223 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
19 dmsnopg 5524 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
20193ad2ant3 1077 . . . . 5 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
21203ad2ant2 1076 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
2218, 21uneq12d 3730 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∪ {𝑍}))
23 df-tp 4130 . . . . 5 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
2423dmeqi 5247 . . . 4 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
25 dmun 5253 . . . 4 dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}) = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
2624, 25eqtri 2632 . . 3 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
27 df-tp 4130 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
2822, 26, 273eqtr4g 2669 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍})
29 df-fn 5807 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍} ↔ (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ∧ dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍}))
301, 28, 29sylanbrc 695 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cun 3538  {csn 4125  {cpr 4127  {ctp 4129  cop 4131  dom cdm 5038  Fun wfun 5798   Fn wfn 5799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-fun 5806  df-fn 5807
This theorem is referenced by:  2trllemD  26087
  Copyright terms: Public domain W3C validator