MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnsplit Structured version   Visualization version   GIF version

Theorem fnsnsplit 6355
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
fnsnsplit ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))

Proof of Theorem fnsnsplit
StepHypRef Expression
1 fnresdm 5914 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 480 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = 𝐹)
3 resundi 5330 . . 3 (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋}))
4 difsnid 4282 . . . . 5 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
54adantl 481 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
65reseq2d 5317 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹𝐴))
7 fnressn 6330 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹𝑋)⟩})
87uneq2d 3729 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
93, 6, 83eqtr3a 2668 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
102, 9eqtr3d 2646 1 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cdif 3537  cun 3538  {csn 4125  cop 4131  cres 5040   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812
This theorem is referenced by:  funresdfunsn  6360  ralxpmap  7793  finixpnum  32564  poimirlem4  32583
  Copyright terms: Public domain W3C validator