Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmap | Structured version Visualization version GIF version |
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fnmap | ⊢ ↑𝑚 Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 7746 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | vex 3176 | . . 3 ⊢ 𝑦 ∈ V | |
3 | vex 3176 | . . 3 ⊢ 𝑥 ∈ V | |
4 | mapex 7750 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
5 | 2, 3, 4 | mp2an 704 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
6 | 1, 5 | fnmpt2i 7128 | 1 ⊢ ↑𝑚 Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 {cab 2596 Vcvv 3173 × cxp 5036 Fn wfn 5799 ⟶wf 5800 ↑𝑚 cmap 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 |
This theorem is referenced by: elmapex 7764 |
Copyright terms: Public domain | W3C validator |