Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet2 Structured version   Visualization version   GIF version

Theorem fnemeet2 31532
Description: The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Distinct variable groups:   𝑦,𝑡,𝑥,𝑆   𝑡,𝑉,𝑥   𝑡,𝑋,𝑥,𝑦   𝑡,𝑇,𝑥
Allowed substitution hints:   𝑇(𝑦)   𝑉(𝑦)

Proof of Theorem fnemeet2
StepHypRef Expression
1 riin0 4530 . . . . . . . . . 10 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
21unieqd 4382 . . . . . . . . 9 (𝑆 = ∅ → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝒫 𝑋)
3 unipw 4845 . . . . . . . . 9 𝒫 𝑋 = 𝑋
42, 3syl6req 2661 . . . . . . . 8 (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
54a1i 11 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 = ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
6 n0 3890 . . . . . . . 8 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
7 unieq 4380 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 𝑦 = 𝑥)
87eqeq2d 2620 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑋 = 𝑦𝑋 = 𝑥))
98rspccva 3281 . . . . . . . . . . . 12 ((∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
1093adant1 1072 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
11 fnemeet1 31531 . . . . . . . . . . . 12 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥)
12 eqid 2610 . . . . . . . . . . . . 13 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))
13 eqid 2610 . . . . . . . . . . . . 13 𝑥 = 𝑥
1412, 13fnebas 31509 . . . . . . . . . . . 12 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1511, 14syl 17 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑥)
1610, 15eqtr4d 2647 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
17163expia 1259 . . . . . . . . 9 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
1817exlimdv 1848 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (∃𝑥 𝑥𝑆𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
196, 18syl5bi 231 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 ≠ ∅ → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
205, 19pm2.61dne 2868 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2120adantr 480 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
22 eqid 2610 . . . . . . 7 𝑇 = 𝑇
2322, 12fnebas 31509 . . . . . 6 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2423adantl 481 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
2521, 24eqtr4d 2647 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))) → 𝑋 = 𝑇)
2625ex 449 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑋 = 𝑇))
27 fnetr 31516 . . . . . . 7 ((𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥) → 𝑇Fne𝑥)
2827expcom 450 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝑥 → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
2911, 28syl 17 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
30293expa 1257 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑥𝑆) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → 𝑇Fne𝑥))
3130ralrimdva 2952 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → ∀𝑥𝑆 𝑇Fne𝑥))
3226, 31jcad 554 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) → (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
33 simprl 790 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = 𝑇)
3420adantr 480 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑋 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
3533, 34eqtr3d 2646 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
36 eqimss2 3621 . . . . . . . 8 (𝑋 = 𝑇 𝑇𝑋)
3736ad2antrl 760 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇𝑋)
38 sspwuni 4547 . . . . . . 7 (𝑇 ⊆ 𝒫 𝑋 𝑇𝑋)
3937, 38sylibr 223 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ 𝒫 𝑋)
40 breq2 4587 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝑇Fne𝑥𝑇Fne𝑡))
4140cbvralv 3147 . . . . . . . . 9 (∀𝑥𝑆 𝑇Fne𝑥 ↔ ∀𝑡𝑆 𝑇Fne𝑡)
42 fnetg 31510 . . . . . . . . . 10 (𝑇Fne𝑡𝑇 ⊆ (topGen‘𝑡))
4342ralimi 2936 . . . . . . . . 9 (∀𝑡𝑆 𝑇Fne𝑡 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4441, 43sylbi 206 . . . . . . . 8 (∀𝑥𝑆 𝑇Fne𝑥 → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4544ad2antll 761 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
46 ssiin 4506 . . . . . . 7 (𝑇 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝑇 ⊆ (topGen‘𝑡))
4745, 46sylibr 223 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 𝑡𝑆 (topGen‘𝑡))
4839, 47ssind 3799 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
49 pwexg 4776 . . . . . . . 8 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
50 inex1g 4729 . . . . . . . 8 (𝒫 𝑋 ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5149, 50syl 17 . . . . . . 7 (𝑋𝑉 → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
5251ad2antrr 758 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V)
53 bastg 20581 . . . . . 6 ((𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∈ V → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5452, 53syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5548, 54sstrd 3578 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5622, 12isfne4 31505 . . . 4 (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ ( 𝑇 = (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ∧ 𝑇 ⊆ (topGen‘(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))))
5735, 55, 56sylanbrc 695 . . 3 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)))
5857ex 449 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → ((𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥) → 𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))))
5932, 58impbid 201 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑇Fne(𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑇Fne𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   ciin 4456   class class class wbr 4583  cfv 5804  topGenctg 15921  Fnecfne 31501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-topgen 15927  df-fne 31502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator