Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1lem1 Structured version   Visualization version   GIF version

Theorem fmul01lt1lem1 38651
Description: Given a finite multiplication of values betweeen 0 and 1, a value larger than its frist element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1lem1.1 𝑖𝐵
fmul01lt1lem1.2 𝑖𝜑
fmul01lt1lem1.3 𝐴 = seq𝐿( · , 𝐵)
fmul01lt1lem1.4 (𝜑𝐿 ∈ ℤ)
fmul01lt1lem1.5 (𝜑𝑀 ∈ (ℤ𝐿))
fmul01lt1lem1.6 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
fmul01lt1lem1.7 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
fmul01lt1lem1.8 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
fmul01lt1lem1.9 (𝜑𝐸 ∈ ℝ+)
fmul01lt1lem1.10 (𝜑 → (𝐵𝐿) < 𝐸)
Assertion
Ref Expression
fmul01lt1lem1 (𝜑 → (𝐴𝑀) < 𝐸)
Distinct variable groups:   𝑖,𝐿   𝑖,𝑀
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖)   𝐵(𝑖)   𝐸(𝑖)

Proof of Theorem fmul01lt1lem1
Dummy variables 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . 5 ((𝜑𝑀 = 𝐿) → 𝑀 = 𝐿)
21fveq2d 6107 . . . 4 ((𝜑𝑀 = 𝐿) → (𝐴𝑀) = (𝐴𝐿))
3 fmul01lt1lem1.3 . . . . . 6 𝐴 = seq𝐿( · , 𝐵)
43a1i 11 . . . . 5 ((𝜑𝑀 = 𝐿) → 𝐴 = seq𝐿( · , 𝐵))
54fveq1d 6105 . . . 4 ((𝜑𝑀 = 𝐿) → (𝐴𝐿) = (seq𝐿( · , 𝐵)‘𝐿))
6 fmul01lt1lem1.4 . . . . . 6 (𝜑𝐿 ∈ ℤ)
7 seq1 12676 . . . . . 6 (𝐿 ∈ ℤ → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵𝐿))
86, 7syl 17 . . . . 5 (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵𝐿))
98adantr 480 . . . 4 ((𝜑𝑀 = 𝐿) → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵𝐿))
102, 5, 93eqtrd 2648 . . 3 ((𝜑𝑀 = 𝐿) → (𝐴𝑀) = (𝐵𝐿))
11 fmul01lt1lem1.10 . . . 4 (𝜑 → (𝐵𝐿) < 𝐸)
1211adantr 480 . . 3 ((𝜑𝑀 = 𝐿) → (𝐵𝐿) < 𝐸)
1310, 12eqbrtrd 4605 . 2 ((𝜑𝑀 = 𝐿) → (𝐴𝑀) < 𝐸)
14 simpr 476 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → ¬ 𝑀 = 𝐿)
1514neqned 2789 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → 𝑀𝐿)
166zred 11358 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
17 fmul01lt1lem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝐿))
18 eluzelz 11573 . . . . . . . . 9 (𝑀 ∈ (ℤ𝐿) → 𝑀 ∈ ℤ)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2019zred 11358 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
21 eluzle 11576 . . . . . . . 8 (𝑀 ∈ (ℤ𝐿) → 𝐿𝑀)
2217, 21syl 17 . . . . . . 7 (𝜑𝐿𝑀)
2316, 20, 223jca 1235 . . . . . 6 (𝜑 → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿𝑀))
2423adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿𝑀))
25 leltne 10006 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿𝑀) → (𝐿 < 𝑀𝑀𝐿))
2624, 25syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐿 < 𝑀𝑀𝐿))
2715, 26mpbird 246 . . 3 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → 𝐿 < 𝑀)
283fveq1i 6104 . . . 4 (𝐴𝑀) = (seq𝐿( · , 𝐵)‘𝑀)
29 remulcl 9900 . . . . . . 7 ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑗 · 𝑘) ∈ ℝ)
3029adantl 481 . . . . . 6 (((𝜑𝐿 < 𝑀) ∧ (𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ)) → (𝑗 · 𝑘) ∈ ℝ)
31 recn 9905 . . . . . . . . 9 (𝑗 ∈ ℝ → 𝑗 ∈ ℂ)
32313ad2ant1 1075 . . . . . . . 8 ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑗 ∈ ℂ)
33 recn 9905 . . . . . . . . 9 (𝑘 ∈ ℝ → 𝑘 ∈ ℂ)
34333ad2ant2 1076 . . . . . . . 8 ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑘 ∈ ℂ)
35 recn 9905 . . . . . . . . 9 (𝑙 ∈ ℝ → 𝑙 ∈ ℂ)
36353ad2ant3 1077 . . . . . . . 8 ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → 𝑙 ∈ ℂ)
3732, 34, 36mulassd 9942 . . . . . . 7 ((𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → ((𝑗 · 𝑘) · 𝑙) = (𝑗 · (𝑘 · 𝑙)))
3837adantl 481 . . . . . 6 (((𝜑𝐿 < 𝑀) ∧ (𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ)) → ((𝑗 · 𝑘) · 𝑙) = (𝑗 · (𝑘 · 𝑙)))
39 simpr 476 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
4039olcd 407 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀 < 𝐿𝐿 < 𝑀))
4120, 16jca 553 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
43 lttri2 9999 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀𝐿 ↔ (𝑀 < 𝐿𝐿 < 𝑀)))
4442, 43syl 17 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿 ↔ (𝑀 < 𝐿𝐿 < 𝑀)))
4540, 44mpbird 246 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → 𝑀𝐿)
4645neneqd 2787 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ¬ 𝑀 = 𝐿)
47 uzp1 11597 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝐿) → (𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))))
4817, 47syl 17 . . . . . . . . 9 (𝜑 → (𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))))
4948adantr 480 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → (𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))))
5049ord 391 . . . . . . 7 ((𝜑𝐿 < 𝑀) → (¬ 𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))))
5146, 50mpd 15 . . . . . 6 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ (ℤ‘(𝐿 + 1)))
526adantr 480 . . . . . . 7 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℤ)
53 uzid 11578 . . . . . . 7 (𝐿 ∈ ℤ → 𝐿 ∈ (ℤ𝐿))
5452, 53syl 17 . . . . . 6 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ (ℤ𝐿))
55 fmul01lt1lem1.2 . . . . . . . . . 10 𝑖𝜑
56 nfv 1830 . . . . . . . . . 10 𝑖 𝑗 ∈ (𝐿...𝑀)
5755, 56nfan 1816 . . . . . . . . 9 𝑖(𝜑𝑗 ∈ (𝐿...𝑀))
58 fmul01lt1lem1.1 . . . . . . . . . . 11 𝑖𝐵
59 nfcv 2751 . . . . . . . . . . 11 𝑖𝑗
6058, 59nffv 6110 . . . . . . . . . 10 𝑖(𝐵𝑗)
6160nfel1 2765 . . . . . . . . 9 𝑖(𝐵𝑗) ∈ ℝ
6257, 61nfim 1813 . . . . . . . 8 𝑖((𝜑𝑗 ∈ (𝐿...𝑀)) → (𝐵𝑗) ∈ ℝ)
63 eleq1 2676 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑗 ∈ (𝐿...𝑀)))
6463anbi2d 736 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑𝑗 ∈ (𝐿...𝑀))))
65 fveq2 6103 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
6665eleq1d 2672 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐵𝑖) ∈ ℝ ↔ (𝐵𝑗) ∈ ℝ))
6764, 66imbi12d 333 . . . . . . . 8 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝑗 ∈ (𝐿...𝑀)) → (𝐵𝑗) ∈ ℝ)))
68 fmul01lt1lem1.6 . . . . . . . 8 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
6962, 67, 68chvar 2250 . . . . . . 7 ((𝜑𝑗 ∈ (𝐿...𝑀)) → (𝐵𝑗) ∈ ℝ)
7069adantlr 747 . . . . . 6 (((𝜑𝐿 < 𝑀) ∧ 𝑗 ∈ (𝐿...𝑀)) → (𝐵𝑗) ∈ ℝ)
7130, 38, 51, 54, 70seqsplit 12696 . . . . 5 ((𝜑𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)))
72 eluzfz1 12219 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐿) → 𝐿 ∈ (𝐿...𝑀))
7317, 72syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (𝐿...𝑀))
7473ancli 572 . . . . . . . . . 10 (𝜑 → (𝜑𝐿 ∈ (𝐿...𝑀)))
75 nfv 1830 . . . . . . . . . . . . 13 𝑖 𝐿 ∈ (𝐿...𝑀)
7655, 75nfan 1816 . . . . . . . . . . . 12 𝑖(𝜑𝐿 ∈ (𝐿...𝑀))
77 nfcv 2751 . . . . . . . . . . . . . 14 𝑖𝐿
7858, 77nffv 6110 . . . . . . . . . . . . 13 𝑖(𝐵𝐿)
7978nfel1 2765 . . . . . . . . . . . 12 𝑖(𝐵𝐿) ∈ ℝ
8076, 79nfim 1813 . . . . . . . . . . 11 𝑖((𝜑𝐿 ∈ (𝐿...𝑀)) → (𝐵𝐿) ∈ ℝ)
81 eleq1 2676 . . . . . . . . . . . . 13 (𝑖 = 𝐿 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝐿 ∈ (𝐿...𝑀)))
8281anbi2d 736 . . . . . . . . . . . 12 (𝑖 = 𝐿 → ((𝜑𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑𝐿 ∈ (𝐿...𝑀))))
83 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝐿 → (𝐵𝑖) = (𝐵𝐿))
8483eleq1d 2672 . . . . . . . . . . . 12 (𝑖 = 𝐿 → ((𝐵𝑖) ∈ ℝ ↔ (𝐵𝐿) ∈ ℝ))
8582, 84imbi12d 333 . . . . . . . . . . 11 (𝑖 = 𝐿 → (((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝐿 ∈ (𝐿...𝑀)) → (𝐵𝐿) ∈ ℝ)))
8680, 85, 68vtoclg1f 3238 . . . . . . . . . 10 (𝐿 ∈ (𝐿...𝑀) → ((𝜑𝐿 ∈ (𝐿...𝑀)) → (𝐵𝐿) ∈ ℝ))
8773, 74, 86sylc 63 . . . . . . . . 9 (𝜑 → (𝐵𝐿) ∈ ℝ)
888, 87eqeltrd 2688 . . . . . . . 8 (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℝ)
8988adantr 480 . . . . . . 7 ((𝜑𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℝ)
906adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ)
9119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ)
92 elfzelz 12213 . . . . . . . . . . . . 13 (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗 ∈ ℤ)
9392adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ ℤ)
9490, 91, 933jca 1235 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
9516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ)
96 peano2re 10088 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℝ → (𝐿 + 1) ∈ ℝ)
9716, 96syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 + 1) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ)
9992zred 11358 . . . . . . . . . . . . . 14 (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗 ∈ ℝ)
10099adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ ℝ)
10116lep1d 10834 . . . . . . . . . . . . . 14 (𝜑𝐿 ≤ (𝐿 + 1))
102101adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1))
103 elfzle1 12215 . . . . . . . . . . . . . 14 (𝑗 ∈ ((𝐿 + 1)...𝑀) → (𝐿 + 1) ≤ 𝑗)
104103adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑗)
10595, 98, 100, 102, 104letrd 10073 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝐿𝑗)
106 elfzle2 12216 . . . . . . . . . . . . 13 (𝑗 ∈ ((𝐿 + 1)...𝑀) → 𝑗𝑀)
107106adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗𝑀)
108105, 107jca 553 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐿𝑗𝑗𝑀))
109 elfz2 12204 . . . . . . . . . . 11 (𝑗 ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝐿𝑗𝑗𝑀)))
11094, 108, 109sylanbrc 695 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → 𝑗 ∈ (𝐿...𝑀))
111110, 69syldan 486 . . . . . . . . 9 ((𝜑𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐵𝑗) ∈ ℝ)
112111adantlr 747 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ 𝑗 ∈ ((𝐿 + 1)...𝑀)) → (𝐵𝑗) ∈ ℝ)
11351, 112, 30seqcl 12683 . . . . . . 7 ((𝜑𝐿 < 𝑀) → (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ∈ ℝ)
11489, 113remulcld 9949 . . . . . 6 ((𝜑𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ∈ ℝ)
115 fmul01lt1lem1.9 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
116115rpred 11748 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
117116adantr 480 . . . . . 6 ((𝜑𝐿 < 𝑀) → 𝐸 ∈ ℝ)
118 1red 9934 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → 1 ∈ ℝ)
119 nfcv 2751 . . . . . . . . . . . . . 14 𝑖0
120 nfcv 2751 . . . . . . . . . . . . . 14 𝑖
121119, 120, 78nfbr 4629 . . . . . . . . . . . . 13 𝑖0 ≤ (𝐵𝐿)
12276, 121nfim 1813 . . . . . . . . . . . 12 𝑖((𝜑𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝐿))
12383breq2d 4595 . . . . . . . . . . . . 13 (𝑖 = 𝐿 → (0 ≤ (𝐵𝑖) ↔ 0 ≤ (𝐵𝐿)))
12482, 123imbi12d 333 . . . . . . . . . . . 12 (𝑖 = 𝐿 → (((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖)) ↔ ((𝜑𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝐿))))
125 fmul01lt1lem1.7 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
126122, 124, 125vtoclg1f 3238 . . . . . . . . . . 11 (𝐿 ∈ (𝐿...𝑀) → ((𝜑𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝐿)))
12773, 74, 126sylc 63 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝐵𝐿))
128127, 8breqtrrd 4611 . . . . . . . . 9 (𝜑 → 0 ≤ (seq𝐿( · , 𝐵)‘𝐿))
129128adantr 480 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → 0 ≤ (seq𝐿( · , 𝐵)‘𝐿))
130 nfv 1830 . . . . . . . . . . 11 𝑖 𝐿 < 𝑀
13155, 130nfan 1816 . . . . . . . . . 10 𝑖(𝜑𝐿 < 𝑀)
132 eqid 2610 . . . . . . . . . 10 seq(𝐿 + 1)( · , 𝐵) = seq(𝐿 + 1)( · , 𝐵)
1336peano2zd 11361 . . . . . . . . . . 11 (𝜑 → (𝐿 + 1) ∈ ℤ)
134133adantr 480 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 + 1) ∈ ℤ)
13516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
136135, 39gtned 10051 . . . . . . . . . . . 12 ((𝜑𝐿 < 𝑀) → 𝑀𝐿)
137136neneqd 2787 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → ¬ 𝑀 = 𝐿)
13817adantr 480 . . . . . . . . . . . 12 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ (ℤ𝐿))
139138, 47syl 17 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → (𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))))
140 orel1 396 . . . . . . . . . . 11 𝑀 = 𝐿 → ((𝑀 = 𝐿𝑀 ∈ (ℤ‘(𝐿 + 1))) → 𝑀 ∈ (ℤ‘(𝐿 + 1))))
141137, 139, 140sylc 63 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ (ℤ‘(𝐿 + 1)))
14219adantr 480 . . . . . . . . . . . 12 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℤ)
143134, 142, 1423jca 1235 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → ((𝐿 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ))
144 zltp1le 11304 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 < 𝑀 ↔ (𝐿 + 1) ≤ 𝑀))
14552, 142, 144syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝐿 + 1) ≤ 𝑀))
14639, 145mpbid 221 . . . . . . . . . . . 12 ((𝜑𝐿 < 𝑀) → (𝐿 + 1) ≤ 𝑀)
14720adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
148147leidd 10473 . . . . . . . . . . . 12 ((𝜑𝐿 < 𝑀) → 𝑀𝑀)
149146, 148jca 553 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → ((𝐿 + 1) ≤ 𝑀𝑀𝑀))
150 elfz2 12204 . . . . . . . . . . 11 (𝑀 ∈ ((𝐿 + 1)...𝑀) ↔ (((𝐿 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝐿 + 1) ≤ 𝑀𝑀𝑀)))
151143, 149, 150sylanbrc 695 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ((𝐿 + 1)...𝑀))
1526adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ)
15319adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ)
154 elfzelz 12213 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖 ∈ ℤ)
155154adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℤ)
156152, 153, 1553jca 1235 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ))
15716adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ)
158157, 96syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ)
159154zred 11358 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖 ∈ ℝ)
160159adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℝ)
161101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1))
162 elfzle1 12215 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((𝐿 + 1)...𝑀) → (𝐿 + 1) ≤ 𝑖)
163162adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑖)
164157, 158, 160, 161, 163letrd 10073 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿𝑖)
165 elfzle2 12216 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((𝐿 + 1)...𝑀) → 𝑖𝑀)
166165adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖𝑀)
167164, 166jca 553 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿𝑖𝑖𝑀))
168 elfz2 12204 . . . . . . . . . . . . 13 (𝑖 ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝐿𝑖𝑖𝑀)))
169156, 167, 168sylanbrc 695 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ (𝐿...𝑀))
170169, 68syldan 486 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵𝑖) ∈ ℝ)
171170adantlr 747 . . . . . . . . . 10 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵𝑖) ∈ ℝ)
172 simpll 786 . . . . . . . . . . 11 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝜑)
1736ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℤ)
17419ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑀 ∈ ℤ)
175154adantl 481 . . . . . . . . . . . . 13 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℤ)
176173, 174, 1753jca 1235 . . . . . . . . . . . 12 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ))
17716ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ∈ ℝ)
17897ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ∈ ℝ)
179159adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ ℝ)
180101ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿 ≤ (𝐿 + 1))
181162adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿 + 1) ≤ 𝑖)
182177, 178, 179, 180, 181letrd 10073 . . . . . . . . . . . . 13 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝐿𝑖)
183165adantl 481 . . . . . . . . . . . . 13 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖𝑀)
184182, 183jca 553 . . . . . . . . . . . 12 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐿𝑖𝑖𝑀))
185176, 184, 168sylanbrc 695 . . . . . . . . . . 11 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 𝑖 ∈ (𝐿...𝑀))
186172, 185, 125syl2anc 691 . . . . . . . . . 10 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → 0 ≤ (𝐵𝑖))
187 fmul01lt1lem1.8 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
188172, 185, 187syl2anc 691 . . . . . . . . . 10 (((𝜑𝐿 < 𝑀) ∧ 𝑖 ∈ ((𝐿 + 1)...𝑀)) → (𝐵𝑖) ≤ 1)
18958, 131, 132, 134, 141, 151, 171, 186, 188fmul01 38647 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (0 ≤ (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ∧ (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ≤ 1))
190189simprd 478 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → (seq(𝐿 + 1)( · , 𝐵)‘𝑀) ≤ 1)
191113, 118, 89, 129, 190lemul2ad 10843 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ≤ ((seq𝐿( · , 𝐵)‘𝐿) · 1))
19288recnd 9947 . . . . . . . . 9 (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) ∈ ℂ)
193192mulid1d 9936 . . . . . . . 8 (𝜑 → ((seq𝐿( · , 𝐵)‘𝐿) · 1) = (seq𝐿( · , 𝐵)‘𝐿))
194193adantr 480 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · 1) = (seq𝐿( · , 𝐵)‘𝐿))
195191, 194breqtrd 4609 . . . . . 6 ((𝜑𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) ≤ (seq𝐿( · , 𝐵)‘𝐿))
1968, 11eqbrtrd 4605 . . . . . . 7 (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) < 𝐸)
197196adantr 480 . . . . . 6 ((𝜑𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝐿) < 𝐸)
198114, 89, 117, 195, 197lelttrd 10074 . . . . 5 ((𝜑𝐿 < 𝑀) → ((seq𝐿( · , 𝐵)‘𝐿) · (seq(𝐿 + 1)( · , 𝐵)‘𝑀)) < 𝐸)
19971, 198eqbrtrd 4605 . . . 4 ((𝜑𝐿 < 𝑀) → (seq𝐿( · , 𝐵)‘𝑀) < 𝐸)
20028, 199syl5eqbr 4618 . . 3 ((𝜑𝐿 < 𝑀) → (𝐴𝑀) < 𝐸)
20127, 200syldan 486 . 2 ((𝜑 ∧ ¬ 𝑀 = 𝐿) → (𝐴𝑀) < 𝐸)
20213, 201pm2.61dan 828 1 (𝜑 → (𝐴𝑀) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664
This theorem is referenced by:  fmul01lt1lem2  38652
  Copyright terms: Public domain W3C validator