Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1 Structured version   Visualization version   GIF version

Theorem fmul01lt1 38653
Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1.1 𝑖𝐵
fmul01lt1.2 𝑖𝜑
fmul01lt1.3 𝑗𝐴
fmul01lt1.4 𝐴 = seq1( · , 𝐵)
fmul01lt1.5 (𝜑𝑀 ∈ ℕ)
fmul01lt1.6 (𝜑𝐵:(1...𝑀)⟶ℝ)
fmul01lt1.7 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
fmul01lt1.8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
fmul01lt1.9 (𝜑𝐸 ∈ ℝ+)
fmul01lt1.10 (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸)
Assertion
Ref Expression
fmul01lt1 (𝜑 → (𝐴𝑀) < 𝐸)
Distinct variable groups:   𝑖,𝑗,𝐸   𝑖,𝑀,𝑗   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)

Proof of Theorem fmul01lt1
StepHypRef Expression
1 fmul01lt1.10 . 2 (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸)
2 nfv 1830 . . 3 𝑗𝜑
3 fmul01lt1.3 . . . . 5 𝑗𝐴
4 nfcv 2751 . . . . 5 𝑗𝑀
53, 4nffv 6110 . . . 4 𝑗(𝐴𝑀)
6 nfcv 2751 . . . 4 𝑗 <
7 nfcv 2751 . . . 4 𝑗𝐸
85, 6, 7nfbr 4629 . . 3 𝑗(𝐴𝑀) < 𝐸
9 fmul01lt1.1 . . . . 5 𝑖𝐵
10 fmul01lt1.2 . . . . . 6 𝑖𝜑
11 nfv 1830 . . . . . 6 𝑖 𝑗 ∈ (1...𝑀)
12 nfcv 2751 . . . . . . . 8 𝑖𝑗
139, 12nffv 6110 . . . . . . 7 𝑖(𝐵𝑗)
14 nfcv 2751 . . . . . . 7 𝑖 <
15 nfcv 2751 . . . . . . 7 𝑖𝐸
1613, 14, 15nfbr 4629 . . . . . 6 𝑖(𝐵𝑗) < 𝐸
1710, 11, 16nf3an 1819 . . . . 5 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸)
18 fmul01lt1.4 . . . . 5 𝐴 = seq1( · , 𝐵)
19 1zzd 11285 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 1 ∈ ℤ)
20 fmul01lt1.5 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
21 elnnuz 11600 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2220, 21sylib 207 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
23223ad2ant1 1075 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝑀 ∈ (ℤ‘1))
24 fmul01lt1.6 . . . . . . 7 (𝜑𝐵:(1...𝑀)⟶ℝ)
2524fnvinran 38196 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ∈ ℝ)
26253ad2antl1 1216 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ∈ ℝ)
27 fmul01lt1.7 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
28273ad2antl1 1216 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
29 fmul01lt1.8 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
30293ad2antl1 1216 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
31 fmul01lt1.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
32313ad2ant1 1075 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝐸 ∈ ℝ+)
33 simp2 1055 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀))
34 simp3 1056 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → (𝐵𝑗) < 𝐸)
359, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34fmul01lt1lem2 38652 . . . 4 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → (𝐴𝑀) < 𝐸)
36353exp 1256 . . 3 (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵𝑗) < 𝐸 → (𝐴𝑀) < 𝐸)))
372, 8, 36rexlimd 3008 . 2 (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸 → (𝐴𝑀) < 𝐸))
381, 37mpd 15 1 (𝜑 → (𝐴𝑀) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cn 10897  cuz 11563  +crp 11708  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664
This theorem is referenced by:  stoweidlem48  38941
  Copyright terms: Public domain W3C validator