Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucnd Structured version   Visualization version   GIF version

Theorem fmucnd 21906
 Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Hypotheses
Ref Expression
fmucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
fmucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
fmucnd.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
fmucnd.4 (𝜑𝐶 ∈ (CauFilu𝑈))
fmucnd.5 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
Assertion
Ref Expression
fmucnd (𝜑𝐷 ∈ (CauFilu𝑉))
Distinct variable groups:   𝐶,𝑎   𝐷,𝑎   𝐹,𝑎   𝑉,𝑎   𝑋,𝑎   𝑌,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑈(𝑎)

Proof of Theorem fmucnd
Dummy variables 𝑐 𝑏 𝑣 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmucnd.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 fmucnd.4 . . . 4 (𝜑𝐶 ∈ (CauFilu𝑈))
3 cfilufbas 21903 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈)) → 𝐶 ∈ (fBas‘𝑋))
41, 2, 3syl2anc 691 . . 3 (𝜑𝐶 ∈ (fBas‘𝑋))
5 fmucnd.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
6 fmucnd.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
7 isucn 21892 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
87simprbda 651 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) ∧ 𝐹 ∈ (𝑈 Cnu𝑉)) → 𝐹:𝑋𝑌)
91, 5, 6, 8syl21anc 1317 . . 3 (𝜑𝐹:𝑋𝑌)
105elfvexd 6132 . . 3 (𝜑𝑌 ∈ V)
11 fmucnd.5 . . . 4 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
1211fbasrn 21498 . . 3 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌𝑌 ∈ V) → 𝐷 ∈ (fBas‘𝑌))
134, 9, 10, 12syl3anc 1318 . 2 (𝜑𝐷 ∈ (fBas‘𝑌))
14 simplr 788 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝐶)
15 eqid 2610 . . . . . . . 8 (𝐹𝑎) = (𝐹𝑎)
16 imaeq2 5381 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
1716eqeq2d 2620 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑎) = (𝐹𝑎)))
1817rspcev 3282 . . . . . . . 8 ((𝑎𝐶 ∧ (𝐹𝑎) = (𝐹𝑎)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
1914, 15, 18sylancl 693 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
20 imaexg 6995 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cnu𝑉) → (𝐹𝑎) ∈ V)
21 eqid 2610 . . . . . . . . . 10 (𝑐𝐶 ↦ (𝐹𝑐)) = (𝑐𝐶 ↦ (𝐹𝑐))
2221elrnmpt 5293 . . . . . . . . 9 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
236, 20, 223syl 18 . . . . . . . 8 (𝜑 → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2423ad3antrrr 762 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2519, 24mpbird 246 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)))
26 imaeq2 5381 . . . . . . . . 9 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
2726cbvmptv 4678 . . . . . . . 8 (𝑎𝐶 ↦ (𝐹𝑎)) = (𝑐𝐶 ↦ (𝐹𝑐))
2827rneqi 5273 . . . . . . 7 ran (𝑎𝐶 ↦ (𝐹𝑎)) = ran (𝑐𝐶 ↦ (𝐹𝑐))
2911, 28eqtri 2632 . . . . . 6 𝐷 = ran (𝑐𝐶 ↦ (𝐹𝑐))
3025, 29syl6eleqr 2699 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ 𝐷)
31 ffn 5958 . . . . . . . . 9 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
329, 31syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
3332ad3antrrr 762 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝐹 Fn 𝑋)
34 simplll 794 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝜑)
35 fbelss 21447 . . . . . . . . 9 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑎𝐶) → 𝑎𝑋)
364, 35sylan 487 . . . . . . . 8 ((𝜑𝑎𝐶) → 𝑎𝑋)
3734, 14, 36syl2anc 691 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝑋)
38 fmucndlem 21905 . . . . . . 7 ((𝐹 Fn 𝑋𝑎𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
3933, 37, 38syl2anc 691 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
40 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
4140mpt2fun 6660 . . . . . . . 8 Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
42 funimass2 5886 . . . . . . . 8 ((Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4341, 42mpan 702 . . . . . . 7 ((𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4443adantl 481 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4539, 44eqsstr3d 3603 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣)
46 id 22 . . . . . . . 8 (𝑏 = (𝐹𝑎) → 𝑏 = (𝐹𝑎))
4746sqxpeqd 5065 . . . . . . 7 (𝑏 = (𝐹𝑎) → (𝑏 × 𝑏) = ((𝐹𝑎) × (𝐹𝑎)))
4847sseq1d 3595 . . . . . 6 (𝑏 = (𝐹𝑎) → ((𝑏 × 𝑏) ⊆ 𝑣 ↔ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣))
4948rspcev 3282 . . . . 5 (((𝐹𝑎) ∈ 𝐷 ∧ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
5030, 45, 49syl2anc 691 . . . 4 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
511adantr 480 . . . . 5 ((𝜑𝑣𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
522adantr 480 . . . . 5 ((𝜑𝑣𝑉) → 𝐶 ∈ (CauFilu𝑈))
535adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑉 ∈ (UnifOn‘𝑌))
546adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝐹 ∈ (𝑈 Cnu𝑉))
55 simpr 476 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
56 nfcv 2751 . . . . . . 7 𝑠⟨(𝐹𝑥), (𝐹𝑦)⟩
57 nfcv 2751 . . . . . . 7 𝑡⟨(𝐹𝑥), (𝐹𝑦)⟩
58 nfcv 2751 . . . . . . 7 𝑥⟨(𝐹𝑠), (𝐹𝑡)⟩
59 nfcv 2751 . . . . . . 7 𝑦⟨(𝐹𝑠), (𝐹𝑡)⟩
60 simpl 472 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑥 = 𝑠)
6160fveq2d 6107 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑥) = (𝐹𝑠))
62 simpr 476 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑦 = 𝑡)
6362fveq2d 6107 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑦) = (𝐹𝑡))
6461, 63opeq12d 4348 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 𝑡) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6556, 57, 58, 59, 64cbvmpt2 6632 . . . . . 6 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑠𝑋, 𝑡𝑋 ↦ ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6651, 53, 54, 55, 65ucnprima 21896 . . . . 5 ((𝜑𝑣𝑉) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈)
67 cfiluexsm 21904 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈) ∧ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6851, 52, 66, 67syl3anc 1318 . . . 4 ((𝜑𝑣𝑉) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6950, 68r19.29a 3060 . . 3 ((𝜑𝑣𝑉) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
7069ralrimiva 2949 . 2 (𝜑 → ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
71 iscfilu 21902 . . 3 (𝑉 ∈ (UnifOn‘𝑌) → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
725, 71syl 17 . 2 (𝜑 → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
7313, 70, 72mpbir2and 959 1 (𝜑𝐷 ∈ (CauFilu𝑉))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037  ran crn 5039   “ cima 5041  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  fBascfbas 19555  UnifOncust 21813   Cnucucn 21889  CauFiluccfilu 21900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-fbas 19564  df-ust 21814  df-ucn 21890  df-cfilu 21901 This theorem is referenced by:  ucnextcn  21918
 Copyright terms: Public domain W3C validator