Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2lem Structured version   Visualization version   GIF version

Theorem fmtnorec2lem 39992
Description: Lemma for fmtnorec2 39993 (induction step). (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2lem (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Distinct variable group:   𝑦,𝑛

Proof of Theorem fmtnorec2lem
StepHypRef Expression
1 peano2nn0 11210 . . . . . 6 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
2 peano2nn0 11210 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((𝑦 + 1) + 1) ∈ ℕ0)
3 fmtno 39979 . . . . . 6 (((𝑦 + 1) + 1) ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
41, 2, 33syl 18 . . . . 5 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
5 2cnd 10970 . . . . . . . . 9 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
65, 1expp1d 12871 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((𝑦 + 1) + 1)) = ((2↑(𝑦 + 1)) · 2))
76oveq2d 6565 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (2↑((2↑(𝑦 + 1)) · 2)))
8 2nn0 11186 . . . . . . . . . . . 12 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 2 ∈ ℕ0)
109, 1nn0expcld 12893 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (2↑(𝑦 + 1)) ∈ ℕ0)
119, 10nn0expcld 12893 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℕ0)
1211nn0cnd 11230 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℂ)
1312sqvald 12867 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((2↑(2↑(𝑦 + 1)))↑2) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
145, 9, 10expmuld 12873 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = ((2↑(2↑(𝑦 + 1)))↑2))
15 fmtnom1nn 39982 . . . . . . . . . 10 ((𝑦 + 1) ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
161, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
1716, 16oveq12d 6567 . . . . . . . 8 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
1813, 14, 173eqtr4d 2654 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
197, 18eqtrd 2644 . . . . . 6 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2019oveq1d 6564 . . . . 5 (𝑦 ∈ ℕ0 → ((2↑(2↑((𝑦 + 1) + 1))) + 1) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
214, 20eqtrd 2644 . . . 4 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2221adantr 480 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
23 oveq1 6556 . . . . . 6 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((FermatNo‘(𝑦 + 1)) − 1) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1))
2423oveq1d 6564 . . . . 5 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2524oveq1d 6564 . . . 4 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2625adantl 481 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
27 fzfid 12634 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (0...𝑦) ∈ Fin)
28 elfznn0 12302 . . . . . . . . . . . . 13 (𝑛 ∈ (0...𝑦) → 𝑛 ∈ ℕ0)
29 fmtnonn 39981 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
3029nncnd 10913 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℂ)
3128, 30syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (0...𝑦) → (FermatNo‘𝑛) ∈ ℂ)
3231adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑛 ∈ (0...𝑦)) → (FermatNo‘𝑛) ∈ ℂ)
3327, 32fprodcl 14521 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ∈ ℂ)
34 1cnd 9935 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
3533, 5, 34addsubassd 10291 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)))
36 2m1e1 11012 . . . . . . . . . 10 (2 − 1) = 1
3736oveq2i 6560 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1)
3835, 37syl6eq 2660 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1))
3938oveq1d 6564 . . . . . . 7 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
40 fmtnonn 39981 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
411, 40syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
4241nncnd 10913 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℂ)
4342, 34subcld 10271 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) ∈ ℂ)
4433, 42muls1d 10370 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
4543mulid2d 9937 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (1 · ((FermatNo‘(𝑦 + 1)) − 1)) = ((FermatNo‘(𝑦 + 1)) − 1))
4644, 45oveq12d 6567 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) + (1 · ((FermatNo‘(𝑦 + 1)) − 1))) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4733, 43, 34, 46joinlmuladdmuld 9946 . . . . . . 7 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4839, 47eqtrd 2644 . . . . . 6 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4948adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5049oveq1d 6564 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5142, 5, 33subadd2d 10290 . . . . . . 7 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1))))
52 eqcom 2617 . . . . . . 7 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1)))
5351, 52syl6rbbr 278 . . . . . 6 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
54 oveq2 6557 . . . . . . . . . . 11 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)))
5554oveq1d 6564 . . . . . . . . . 10 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5655oveq1d 6564 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5756eqcoms 2618 . . . . . . . 8 (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5833, 42mulcld 9939 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) ∈ ℂ)
5942, 5subcld 10271 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 2) ∈ ℂ)
6058, 59subcld 10271 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) ∈ ℂ)
6160, 43, 34addassd 9941 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)))
62 elnn0uz 11601 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
6362biimpi 205 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
64 elfznn0 12302 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(𝑦 + 1)) → 𝑛 ∈ ℕ0)
6564, 30syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑦 + 1)) → (FermatNo‘𝑛) ∈ ℂ)
6665adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑛 ∈ (0...(𝑦 + 1))) → (FermatNo‘𝑛) ∈ ℂ)
67 fveq2 6103 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (FermatNo‘𝑛) = (FermatNo‘(𝑦 + 1)))
6863, 66, 67fprodp1 14538 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))))
6968eqcomd 2616 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
7069oveq1d 6564 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)))
71 npcan1 10334 . . . . . . . . . . . 12 ((FermatNo‘(𝑦 + 1)) ∈ ℂ → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7242, 71syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7370, 72oveq12d 6567 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))))
74 fzfid 12634 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (0...(𝑦 + 1)) ∈ Fin)
7574, 66fprodcl 14521 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) ∈ ℂ)
7675, 59, 42subadd23d 10293 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7773, 76eqtrd 2644 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7842, 5nncand 10276 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2)) = 2)
7978oveq2d 6565 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8061, 77, 793eqtrd 2648 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8157, 80sylan9eqr 2666 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8281ex 449 . . . . . 6 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8353, 82sylbid 229 . . . . 5 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8483imp 444 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8550, 84eqtrd 2644 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8622, 26, 853eqtrd 2648 . 2 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8786ex 449 1 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cuz 11563  ...cfz 12197  cexp 12722  cprod 14474  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-fmtno 39978
This theorem is referenced by:  fmtnorec2  39993
  Copyright terms: Public domain W3C validator