Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2 Structured version   Visualization version   GIF version

Theorem fmtnorec2 39993
Description: The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
21fveq2d 6107 . . 3 (𝑥 = 0 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(0 + 1)))
3 oveq2 6557 . . . . 5 (𝑥 = 0 → (0...𝑥) = (0...0))
43prodeq1d 14490 . . . 4 (𝑥 = 0 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...0)(FermatNo‘𝑛))
54oveq1d 6564 . . 3 (𝑥 = 0 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2))
62, 5eqeq12d 2625 . 2 (𝑥 = 0 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)))
7 oveq1 6556 . . . 4 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
87fveq2d 6107 . . 3 (𝑥 = 𝑦 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑦 + 1)))
9 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (0...𝑥) = (0...𝑦))
109prodeq1d 14490 . . . 4 (𝑥 = 𝑦 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛))
1110oveq1d 6564 . . 3 (𝑥 = 𝑦 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2))
128, 11eqeq12d 2625 . 2 (𝑥 = 𝑦 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)))
13 oveq1 6556 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
1413fveq2d 6107 . . 3 (𝑥 = (𝑦 + 1) → (FermatNo‘(𝑥 + 1)) = (FermatNo‘((𝑦 + 1) + 1)))
15 oveq2 6557 . . . . 5 (𝑥 = (𝑦 + 1) → (0...𝑥) = (0...(𝑦 + 1)))
1615prodeq1d 14490 . . . 4 (𝑥 = (𝑦 + 1) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
1716oveq1d 6564 . . 3 (𝑥 = (𝑦 + 1) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
1814, 17eqeq12d 2625 . 2 (𝑥 = (𝑦 + 1) → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
19 oveq1 6556 . . . 4 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
2019fveq2d 6107 . . 3 (𝑥 = 𝑁 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑁 + 1)))
21 oveq2 6557 . . . 4 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
22 prodeq1 14478 . . . . 5 ((0...𝑥) = (0...𝑁) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛))
2322oveq1d 6564 . . . 4 ((0...𝑥) = (0...𝑁) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2421, 23syl 17 . . 3 (𝑥 = 𝑁 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2520, 24eqeq12d 2625 . 2 (𝑥 = 𝑁 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)))
26 fmtno0 39990 . . . . 5 (FermatNo‘0) = 3
2726oveq1i 6559 . . . 4 ((FermatNo‘0) + 2) = (3 + 2)
28 3p2e5 11037 . . . 4 (3 + 2) = 5
2927, 28eqtri 2632 . . 3 ((FermatNo‘0) + 2) = 5
30 fz0sn 12308 . . . . . 6 (0...0) = {0}
3130prodeq1i 14487 . . . . 5 𝑛 ∈ (0...0)(FermatNo‘𝑛) = ∏𝑛 ∈ {0} (FermatNo‘𝑛)
32 0z 11265 . . . . . 6 0 ∈ ℤ
33 0nn0 11184 . . . . . . 7 0 ∈ ℕ0
34 fmtnonn 39981 . . . . . . . 8 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℕ)
3534nncnd 10913 . . . . . . 7 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℂ)
3633, 35ax-mp 5 . . . . . 6 (FermatNo‘0) ∈ ℂ
37 fveq2 6103 . . . . . . 7 (𝑛 = 0 → (FermatNo‘𝑛) = (FermatNo‘0))
3837prodsn 14531 . . . . . 6 ((0 ∈ ℤ ∧ (FermatNo‘0) ∈ ℂ) → ∏𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0))
3932, 36, 38mp2an 704 . . . . 5 𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0)
4031, 39eqtri 2632 . . . 4 𝑛 ∈ (0...0)(FermatNo‘𝑛) = (FermatNo‘0)
4140oveq1i 6559 . . 3 (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2) = ((FermatNo‘0) + 2)
42 0p1e1 11009 . . . . 5 (0 + 1) = 1
4342fveq2i 6106 . . . 4 (FermatNo‘(0 + 1)) = (FermatNo‘1)
44 fmtno1 39991 . . . 4 (FermatNo‘1) = 5
4543, 44eqtri 2632 . . 3 (FermatNo‘(0 + 1)) = 5
4629, 41, 453eqtr4ri 2643 . 2 (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)
47 fmtnorec2lem 39992 . 2 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
486, 12, 18, 25, 46, 47nn0ind 11348 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  2c2 10947  3c3 10948  5c5 10950  0cn0 11169  cz 11254  ...cfz 12197  cprod 14474  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-fmtno 39978
This theorem is referenced by:  fmtnodvds  39994  fmtnorec3  39998
  Copyright terms: Public domain W3C validator