Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec1 Structured version   Visualization version   GIF version

Theorem fmtnorec1 39987
 Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.)
Assertion
Ref Expression
fmtnorec1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))

Proof of Theorem fmtnorec1
StepHypRef Expression
1 peano2nn0 11210 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 fmtno 39979 . . 3 ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
4 2nn0 11186 . . . . . . 7 2 ∈ ℕ0
5 nn0expcl 12736 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0)
64, 5mpan 702 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
7 nn0expcl 12736 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
87nn0cnd 11230 . . . . . . 7 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ)
94, 6, 8sylancr 694 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ)
10 pncan1 10333 . . . . . 6 ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
119, 10syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
1211oveq1d 6564 . . . 4 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2))
13 2cnne0 11119 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
146nn0zd 11356 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
15 2z 11286 . . . . . 6 2 ∈ ℤ
1614, 15jctir 559 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ))
17 expmulz 12768 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
1813, 16, 17sylancr 694 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
19 2cn 10968 . . . . . . 7 2 ∈ ℂ
20 2ne0 10990 . . . . . . 7 2 ≠ 0
21 nn0z 11277 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 expp1z 12771 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2319, 20, 21, 22mp3an12i 1420 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2423eqcomd 2616 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
2524oveq2d 6565 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
2612, 18, 253eqtr2rd 2651 . . 3 (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2))
2726oveq1d 6564 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1))
28 fmtno 39979 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2928eqcomd 2616 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁))
3029oveq1d 6564 . . . 4 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1))
3130oveq1d 6564 . . 3 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2))
3231oveq1d 6564 . 2 (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
333, 27, 323eqtrd 2648 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ↑cexp 12722  FermatNocfmtno 39977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723  df-fmtno 39978 This theorem is referenced by:  fmtnorec3  39998  fmtno5  40007
 Copyright terms: Public domain W3C validator