Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1lem Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1lem 40014
Description: Lemma for fmtnoprmfac1 40015: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1lem ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem fmtnoprmfac1lem
StepHypRef Expression
1 nnnn0 11176 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 39979 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43breq2d 4595 . . . . 5 (𝑁 ∈ ℕ → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
54adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
6 eldifi 3694 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
7 prmnn 15226 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
9 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
109a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 11186 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1312, 1nn0expcld 12893 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
1410, 13nnexpcld 12892 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
1514peano2nnd 10914 . . . . . 6 (𝑁 ∈ ℕ → ((2↑(2↑𝑁)) + 1) ∈ ℕ)
1615nnzd 11357 . . . . 5 (𝑁 ∈ ℕ → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
17 dvdsval3 14825 . . . . 5 ((𝑃 ∈ ℕ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ) → (𝑃 ∥ ((2↑(2↑𝑁)) + 1) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
188, 16, 17syl2anr 494 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) + 1) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
195, 18bitrd 267 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
2019biimp3a 1424 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
2114nnzd 11357 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
2221adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(2↑𝑁)) ∈ ℤ)
23 1zzd 11285 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℤ)
248adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
25 summodnegmod 14850 . . . . . 6 (((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
2622, 23, 24, 25syl3anc 1318 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
27 neg1z 11290 . . . . . . . . . 10 -1 ∈ ℤ
2822, 27jctir 559 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
2928adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
307nnrpd 11746 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
316, 30syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
3212, 31anim12i 588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
3332adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
34 simpr 476 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃))
35 modexp 12861 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (2 ∈ ℕ0𝑃 ∈ ℝ+) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3629, 33, 34, 35syl3anc 1318 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3736ex 449 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃)))
38 2cnd 10970 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3938, 13, 123jca 1235 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
4039adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
41 expmul 12767 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
4240, 41syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
43 2cnd 10970 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℂ)
441adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℕ0)
4543, 44expp1d 12871 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
4645eqcomd 2616 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
4746oveq2d 6565 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
4842, 47eqtr3d 2646 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁))↑2) = (2↑(2↑(𝑁 + 1))))
4948oveq1d 6564 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((2↑(2↑(𝑁 + 1))) mod 𝑃))
50 neg1sqe1 12821 . . . . . . . . . . 11 (-1↑2) = 1
5150a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1↑2) = 1)
5251oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = (1 mod 𝑃))
538nnred 10912 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
54 prmgt1 15247 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 1 < 𝑃)
556, 54syl 17 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
56 1mod 12564 . . . . . . . . . . 11 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
5753, 55, 56syl2anc 691 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
5857adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (1 mod 𝑃) = 1)
5952, 58eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = 1)
6049, 59eqeq12d 2625 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) ↔ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1))
61 simpll 786 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → (𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})))
6221adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(2↑𝑁)) ∈ ℤ)
63 1zzd 11285 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
647adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
6562, 63, 643jca 1235 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
666, 65sylan2 490 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6766adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6867, 25syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
69 m1modnnsub1 12578 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (-1 mod 𝑃) = (𝑃 − 1))
7024, 69syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) = (𝑃 − 1))
71 eldifsni 4261 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ≠ 2)
7372necomd 2837 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ≠ 𝑃)
748nncnd 10913 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
7574adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
76 1cnd 9935 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
7775, 76, 76subadd2d 10290 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ (1 + 1) = 𝑃))
78 1p1e2 11011 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
7978eqeq1i 2615 . . . . . . . . . . . . . . . . . . . 20 ((1 + 1) = 𝑃 ↔ 2 = 𝑃)
8077, 79syl6bb 275 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ 2 = 𝑃))
8180necon3bid 2826 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) ≠ 1 ↔ 2 ≠ 𝑃))
8273, 81mpbird 246 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 − 1) ≠ 1)
8370, 82eqnetrd 2849 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) ≠ 1)
8483adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (-1 mod 𝑃) ≠ 1)
8584adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (-1 mod 𝑃) ≠ 1)
86 eqeq1 2614 . . . . . . . . . . . . . . . 16 (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8786adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8887necon3bid 2826 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ (-1 mod 𝑃) ≠ 1))
8985, 88mpbird 246 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
9089ex 449 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9168, 90sylbid 229 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9291imp 444 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
93 simplr 788 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)
94 odz2prm2pw 40013 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9561, 92, 93, 94syl12anc 1316 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9695ex 449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
9796ex 449 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9860, 97sylbid 229 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9937, 98syld 46 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10026, 99sylbid 229 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10119, 100sylbid 229 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
1021013impia 1253 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
10320, 102mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708   mod cmo 12530  cexp 12722  cdvds 14821  cprime 15223  odcodz 15306  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-odz 15308  df-phi 15309  df-pc 15380  df-fmtno 39978
This theorem is referenced by:  fmtnoprmfac1  40015  fmtnoprmfac2  40017
  Copyright terms: Public domain W3C validator