Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptsnd Structured version   Visualization version   GIF version

Theorem fmptsnd 6340
 Description: Express a singleton function in maps-to notation. Deduction form of fmptsng 6339. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
fmptsnd.1 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
fmptsnd.2 (𝜑𝐴𝑉)
fmptsnd.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
fmptsnd (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem fmptsnd
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 velsn 4141 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21bicomi 213 . . . 4 (𝑥 = 𝐴𝑥 ∈ {𝐴})
32anbi1i 727 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵))
43opabbii 4649 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
5 velsn 4141 . . . . 5 (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 = ⟨𝐴, 𝐶⟩)
6 eqidd 2611 . . . . . . . 8 (𝜑𝐴 = 𝐴)
7 eqidd 2611 . . . . . . . 8 (𝜑𝐶 = 𝐶)
8 sbcan 3445 . . . . . . . . . . 11 ([𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ ([𝐶 / 𝑦]𝑥 = 𝐴[𝐶 / 𝑦]𝑦 = 𝐵))
9 fmptsnd.3 . . . . . . . . . . . . 13 (𝜑𝐶𝑊)
10 sbcg 3470 . . . . . . . . . . . . 13 (𝐶𝑊 → ([𝐶 / 𝑦]𝑥 = 𝐴𝑥 = 𝐴))
119, 10syl 17 . . . . . . . . . . . 12 (𝜑 → ([𝐶 / 𝑦]𝑥 = 𝐴𝑥 = 𝐴))
12 eqsbc3 3442 . . . . . . . . . . . . 13 (𝐶𝑊 → ([𝐶 / 𝑦]𝑦 = 𝐵𝐶 = 𝐵))
139, 12syl 17 . . . . . . . . . . . 12 (𝜑 → ([𝐶 / 𝑦]𝑦 = 𝐵𝐶 = 𝐵))
1411, 13anbi12d 743 . . . . . . . . . . 11 (𝜑 → (([𝐶 / 𝑦]𝑥 = 𝐴[𝐶 / 𝑦]𝑦 = 𝐵) ↔ (𝑥 = 𝐴𝐶 = 𝐵)))
158, 14syl5bb 271 . . . . . . . . . 10 (𝜑 → ([𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑥 = 𝐴𝐶 = 𝐵)))
1615sbcbidv 3457 . . . . . . . . 9 (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ [𝐴 / 𝑥](𝑥 = 𝐴𝐶 = 𝐵)))
17 fmptsnd.2 . . . . . . . . . 10 (𝜑𝐴𝑉)
18 eqeq1 2614 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
1918adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → (𝑥 = 𝐴𝐴 = 𝐴))
20 fmptsnd.1 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
2120eqeq2d 2620 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐴) → (𝐶 = 𝐵𝐶 = 𝐶))
2219, 21anbi12d 743 . . . . . . . . . 10 ((𝜑𝑥 = 𝐴) → ((𝑥 = 𝐴𝐶 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
2317, 22sbcied 3439 . . . . . . . . 9 (𝜑 → ([𝐴 / 𝑥](𝑥 = 𝐴𝐶 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
2416, 23bitrd 267 . . . . . . . 8 (𝜑 → ([𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝐴 = 𝐴𝐶 = 𝐶)))
256, 7, 24mpbir2and 959 . . . . . . 7 (𝜑[𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵))
26 opelopabsb 4910 . . . . . . 7 (⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ [𝐴 / 𝑥][𝐶 / 𝑦](𝑥 = 𝐴𝑦 = 𝐵))
2725, 26sylibr 223 . . . . . 6 (𝜑 → ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
28 eleq1 2676 . . . . . 6 (𝑝 = ⟨𝐴, 𝐶⟩ → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ⟨𝐴, 𝐶⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
2927, 28syl5ibrcom 236 . . . . 5 (𝜑 → (𝑝 = ⟨𝐴, 𝐶⟩ → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
305, 29syl5bi 231 . . . 4 (𝜑 → (𝑝 ∈ {⟨𝐴, 𝐶⟩} → 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
31 elopab 4908 . . . . 5 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)))
32 opeq12 4342 . . . . . . . . . . . 12 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
3332adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
3433eqeq2d 2620 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝑥, 𝑦⟩ ↔ 𝑝 = ⟨𝐴, 𝐵⟩))
3520adantrr 749 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝐵 = 𝐶)
3635opeq2d 4347 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐶⟩)
37 opex 4859 . . . . . . . . . . . . 13 𝐴, 𝐶⟩ ∈ V
3837snid 4155 . . . . . . . . . . . 12 𝐴, 𝐶⟩ ∈ {⟨𝐴, 𝐶⟩}
3936, 38syl6eqel 2696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩})
40 eleq1 2676 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐶⟩}))
4139, 40syl5ibrcom 236 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝐴, 𝐵⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4234, 41sylbid 229 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4342ex 449 . . . . . . . 8 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 = ⟨𝑥, 𝑦⟩ → 𝑝 ∈ {⟨𝐴, 𝐶⟩})))
4443com23 84 . . . . . . 7 (𝜑 → (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑝 ∈ {⟨𝐴, 𝐶⟩})))
4544impd 446 . . . . . 6 (𝜑 → ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4645exlimdvv 1849 . . . . 5 (𝜑 → (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4731, 46syl5bi 231 . . . 4 (𝜑 → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)} → 𝑝 ∈ {⟨𝐴, 𝐶⟩}))
4830, 47impbid 201 . . 3 (𝜑 → (𝑝 ∈ {⟨𝐴, 𝐶⟩} ↔ 𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)}))
4948eqrdv 2608 . 2 (𝜑 → {⟨𝐴, 𝐶⟩} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = 𝐴𝑦 = 𝐵)})
50 df-mpt 4645 . . 3 (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)}
5150a1i 11 . 2 (𝜑 → (𝑥 ∈ {𝐴} ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝐴} ∧ 𝑦 = 𝐵)})
524, 49, 513eqtr4a 2670 1 (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  [wsbc 3402  {csn 4125  ⟨cop 4131  {copab 4642   ↦ cmpt 4643 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-mpt 4645 This theorem is referenced by:  fmptapd  6342  fmptpr  6343  mpt2sn  7155
 Copyright terms: Public domain W3C validator