Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt5 Structured version   Visualization version   GIF version

Theorem flsqrt5 40047
 Description: The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))

Proof of Theorem flsqrt5
StepHypRef Expression
1 5nn0 11189 . . 3 5 ∈ ℕ0
2 flsqrt 40046 . . 3 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 5 ∈ ℕ0) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
31, 2mpan2 703 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
4 5cn 10977 . . . . . . 7 5 ∈ ℂ
54sqvali 12805 . . . . . 6 (5↑2) = (5 · 5)
6 5t5e25 11515 . . . . . 6 (5 · 5) = 25
75, 6eqtri 2632 . . . . 5 (5↑2) = 25
87breq1i 4590 . . . 4 ((5↑2) ≤ 𝑋25 ≤ 𝑋)
98a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((5↑2) ≤ 𝑋25 ≤ 𝑋))
10 5p1e6 11032 . . . . . . 7 (5 + 1) = 6
1110oveq1i 6559 . . . . . 6 ((5 + 1)↑2) = (6↑2)
12 6cn 10979 . . . . . . . 8 6 ∈ ℂ
1312sqvali 12805 . . . . . . 7 (6↑2) = (6 · 6)
14 6t6e36 11522 . . . . . . 7 (6 · 6) = 36
1513, 14eqtri 2632 . . . . . 6 (6↑2) = 36
1611, 15eqtri 2632 . . . . 5 ((5 + 1)↑2) = 36
1716breq2i 4591 . . . 4 (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36)
1817a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36))
199, 18anbi12d 743 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2)) ↔ (25 ≤ 𝑋𝑋 < 36)))
203, 19bitr2d 268 1 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954  2c2 10947  3c3 10948  5c5 10950  6c6 10951  ℕ0cn0 11169  ;cdc 11369  ⌊cfl 12453  ↑cexp 12722  √csqrt 13821 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823 This theorem is referenced by:  31prm  40050
 Copyright terms: Public domain W3C validator