MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flhalf Structured version   Visualization version   GIF version

Theorem flhalf 12493
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))

Proof of Theorem flhalf
StepHypRef Expression
1 zre 11258 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 peano2re 10088 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
31, 2syl 17 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
43rehalfcld 11156 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℝ)
5 flltp1 12463 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℝ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
64, 5syl 17 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
74flcld 12461 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ)
87zred 11358 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ)
9 1red 9934 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℝ)
108, 9readdcld 9948 . . . . . 6 (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ)
11 2rp 11713 . . . . . . 7 2 ∈ ℝ+
1211a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
133, 10, 12ltdivmuld 11799 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))))
146, 13mpbid 221 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))
159recnd 9947 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
16152timesd 11152 . . . . . 6 (𝑁 ∈ ℤ → (2 · 1) = (1 + 1))
1716oveq2d 6565 . . . . 5 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
18 2cnd 10970 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
198recnd 9947 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ)
2018, 19, 15adddid 9943 . . . . 5 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)))
21 2re 10967 . . . . . . . . 9 2 ∈ ℝ
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℝ)
2322, 8remulcld 9949 . . . . . . 7 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ)
2423recnd 9947 . . . . . 6 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ)
2524, 15, 15addassd 9941 . . . . 5 (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
2617, 20, 253eqtr4d 2654 . . . 4 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2714, 26breqtrd 4609 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
2823, 9readdcld 9948 . . . 4 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ)
291, 28, 9ltadd1d 10499 . . 3 (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)))
3027, 29mpbird 246 . 2 (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))
31 2z 11286 . . . . 5 2 ∈ ℤ
3231a1i 11 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3332, 7zmulcld 11364 . . 3 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ)
34 zleltp1 11305 . . 3 ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3533, 34mpdan 699 . 2 (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3630, 35mpbird 246 1 (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455
This theorem is referenced by:  ovolunlem1a  23071
  Copyright terms: Public domain W3C validator