MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flflp1 Structured version   Visualization version   GIF version

Theorem flflp1 12470
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
flflp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))

Proof of Theorem flflp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 12463 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 762 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 flval 12457 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
43ad3antlr 763 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
5 simplr 788 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
61adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 < ((⌊‘𝐴) + 1))
7 reflcl 12459 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
8 peano2re 10088 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
109adantl 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lttr 9993 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1210, 11mpd3an3 1417 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1312ancoms 468 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
146, 13mpan2d 706 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < ((⌊‘𝐴) + 1)))
1514imp 444 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
1615adantlr 747 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
17 flcl 12458 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
18 rebtwnz 11663 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1)))
19 breq1 4586 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝑥𝐵 ↔ (⌊‘𝐴) ≤ 𝐵))
20 oveq1 6556 . . . . . . . . . . . . 13 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
2120breq2d 4595 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝐵 < (𝑥 + 1) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
2219, 21anbi12d 743 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐴) → ((𝑥𝐵𝐵 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1))))
2322riota2 6533 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2417, 18, 23syl2an 493 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2524ad2antrr 758 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
265, 16, 25mpbi2and 958 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴))
274, 26eqtrd 2644 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (⌊‘𝐴))
2827oveq1d 6564 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((⌊‘𝐵) + 1) = ((⌊‘𝐴) + 1))
292, 28breqtrrd 4611 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
3029ex 449 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
31 lenlt 9995 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32 flltp1 12463 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 < ((⌊‘𝐵) + 1))
3332adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < ((⌊‘𝐵) + 1))
34 reflcl 12459 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
35 peano2re 10088 . . . . . . . . 9 ((⌊‘𝐵) ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3736adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) + 1) ∈ ℝ)
38 lelttr 10007 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((⌊‘𝐵) + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
3937, 38mpd3an3 1417 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
4033, 39mpan2d 706 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < ((⌊‘𝐵) + 1)))
4131, 40sylbird 249 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4241adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4330, 42pm2.61d 169 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → 𝐴 < ((⌊‘𝐵) + 1))
44 flval 12457 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4544ad3antrrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4634ad2antlr 759 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ∈ ℝ)
47 simpll 786 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
48 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
49 flle 12462 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (⌊‘𝐵) ≤ 𝐵)
5049ad2antlr 759 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
51 simpr 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
5246, 48, 47, 50, 51lelttrd 10074 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) < 𝐴)
5346, 47, 52ltled 10064 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
5453adantlr 747 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
55 simplr 788 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
56 flcl 12458 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℤ)
57 rebtwnz 11663 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
58 breq1 4586 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝑥𝐴 ↔ (⌊‘𝐵) ≤ 𝐴))
59 oveq1 6556 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐵) → (𝑥 + 1) = ((⌊‘𝐵) + 1))
6059breq2d 4595 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐵) + 1)))
6158, 60anbi12d 743 . . . . . . . . . 10 (𝑥 = (⌊‘𝐵) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1))))
6261riota2 6533 . . . . . . . . 9 (((⌊‘𝐵) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6356, 57, 62syl2anr 494 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6463ad2antrr 758 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6554, 55, 64mpbi2and 958 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵))
6645, 65eqtrd 2644 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (⌊‘𝐵))
6749ad3antlr 763 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
6866, 67eqbrtrd 4605 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
6968ex 449 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
70 flle 12462 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7170adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
727adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
73 letr 10010 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
74733coml 1264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7572, 74mpd3an3 1417 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7671, 75mpand 707 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (⌊‘𝐴) ≤ 𝐵))
7731, 76sylbird 249 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7877adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7969, 78pm2.61d 169 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (⌊‘𝐴) ≤ 𝐵)
8043, 79impbida 873 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ∃!wreu 2898   class class class wbr 4583  cfv 5804  crio 6510  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cz 11254  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455
This theorem is referenced by:  itg2addnclem2  32632  hashnzfzclim  37543  fllog2  42160
  Copyright terms: Public domain W3C validator