MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   GIF version

Theorem fldiv 12521
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2610 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2610 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intfrac2 12519 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1068 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 6564 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 reflcl 12459 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
87recnd 9947 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
10 resubcl 10224 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
117, 10mpdan 699 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
1211recnd 9947 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
14 nncn 10905 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 nnne0 10930 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1614, 15jca 553 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
1716adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
18 divdir 10589 . . . . . 6 (((⌊‘𝐴) ∈ ℂ ∧ (𝐴 − (⌊‘𝐴)) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
199, 13, 17, 18syl3anc 1318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
206, 19eqtrd 2644 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
21 flcl 12458 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
22 eqid 2610 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
23 eqid 2610 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2422, 23intfracq 12520 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2524simp3d 1068 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2621, 25sylan 487 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2726oveq1d 6564 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
287adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
29 nnre 10904 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3029adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
3115adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
3228, 30, 31redivcld 10732 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℝ)
33 reflcl 12459 . . . . . . 7 (((⌊‘𝐴) / 𝑁) ∈ ℝ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3534recnd 9947 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
3632, 34resubcld 10337 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
3736recnd 9947 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3811adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
3938, 30, 31redivcld 10732 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
4039recnd 9947 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4135, 37, 40addassd 9941 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4220, 27, 413eqtrd 2648 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4342fveq2d 6107 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
4424simp1d 1066 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
4521, 44sylan 487 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
46 fracge0 12467 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
4711, 46jca 553 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))))
48 nngt0 10926 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
4929, 48jca 553 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
50 divge0 10771 . . . . 5 ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
5147, 49, 50syl2an 493 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
5236, 39, 45, 51addge0d 10482 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
53 peano2rem 10227 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5429, 53syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5554, 29, 15redivcld 10732 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
56 nnrecre 10934 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
5755, 56jca 553 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5857adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5936, 39, 58jca31 555 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)))
6024simp2d 1067 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
6121, 60sylan 487 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
62 fraclt1 12465 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
6362adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
64 1re 9918 . . . . . . . . 9 1 ∈ ℝ
65 ltdiv1 10766 . . . . . . . . 9 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6664, 65mp3an2 1404 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6711, 49, 66syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6863, 67mpbid 221 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
6961, 68jca 553 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
70 leltadd 10391 . . . . 5 ((((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))))
7159, 69, 70sylc 63 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
72 ax-1cn 9873 . . . . . . . 8 1 ∈ ℂ
73 npcan 10169 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7414, 72, 73sylancl 693 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7574oveq1d 6564 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
7654recnd 9947 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
77 divdir 10589 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7872, 77mp3an2 1404 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7976, 14, 15, 78syl12anc 1316 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8014, 15dividd 10678 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
8175, 79, 803eqtr3d 2652 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8281adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8371, 82breqtrd 4609 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
8432flcld 12461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
8536, 39readdcld 9948 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ)
86 flbi2 12480 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8784, 85, 86syl2anc 691 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8852, 83, 87mpbir2and 959 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
8943, 88eqtr2d 2645 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  cz 11254  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455
This theorem is referenced by:  fldiv2  12522  modmulnn  12550  digit2  12859  bitsp1  14991
  Copyright terms: Public domain W3C validator