Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmsubcALTV Structured version   Visualization version   GIF version

Theorem fldhmsubcALTV 41895
Description: According to df-subc 16295, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16323 and subcss2 16326). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
drhmsubcALTV.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubcALTV.d 𝐷 = (𝑈 ∩ Field)
fldhmsubcALTV.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubcALTV (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubcALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 479 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 18381 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 18573 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2706 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 2906 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubcALTV.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubcALTV.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubcALTV 41887 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)))
11 inss1 3795 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 3598 . . . . . 6 Field ⊆ DivRing
13 sslin 3801 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubcALTV.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 3594 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 223 . . 3 (𝑈𝑉𝐷𝐶)
19 ssid 3587 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
2019a1i 11 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
219a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6558 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 790 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
25 simpr 476 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2625adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
27 ovex 6577 . . . . . . 7 (𝑥 RingHom 𝑦) ∈ V
2827a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2921, 23, 24, 26, 28ovmpt2d 6686 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
30 drhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
3130a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3214, 17mpbir 220 . . . . . . . 8 𝐷𝐶
3332sseli 3564 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3433ad2antrl 760 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3532sseli 3564 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3635adantl 481 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3736adantl 481 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3831, 23, 34, 37, 28ovmpt2d 6686 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3920, 29, 383sstr4d 3611 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
4039ralrimivva 2954 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
41 ovex 6577 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
429, 41fnmpt2i 7128 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4342a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4430, 41fnmpt2i 7128 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4544a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
46 inex1g 4729 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4716, 46syl5eqel 2692 . . . 4 (𝑈𝑉𝐶 ∈ V)
4843, 45, 47isssc 16303 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4918, 40, 48mpbir2and 959 . 2 (𝑈𝑉𝐹cat 𝐽)
5016, 30drhmsubcALTV 41891 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
51 eqid 2610 . . . 4 ((RingCatALTV‘𝑈) ↾cat 𝐽) = ((RingCatALTV‘𝑈) ↾cat 𝐽)
5251subsubc 16336 . . 3 (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5350, 52syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCatALTV‘𝑈)) ∧ 𝐹cat 𝐽)))
5410, 49, 53mpbir2and 959 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540   class class class wbr 4583   × cxp 5036   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  cat cssc 16290  cat cresc 16291  Subcatcsubc 16292  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  DivRingcdr 18570  Fieldcfield 18571  RingCatALTVcringcALTV 41796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-hom 15793  df-cco 15794  df-0g 15925  df-cat 16152  df-cid 16153  df-homf 16154  df-ssc 16293  df-resc 16294  df-subc 16295  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-rnghom 18538  df-drng 18572  df-field 18573  df-ringcALTV 41798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator