Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcrng Structured version   Visualization version   GIF version

Theorem fldcrng 32973
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
fldcrng (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)

Proof of Theorem fldcrng
StepHypRef Expression
1 eqid 2610 . . . . 5 (1st𝐾) = (1st𝐾)
2 eqid 2610 . . . . 5 (2nd𝐾) = (2nd𝐾)
3 eqid 2610 . . . . 5 ran (1st𝐾) = ran (1st𝐾)
4 eqid 2610 . . . . 5 (GId‘(1st𝐾)) = (GId‘(1st𝐾))
51, 2, 3, 4drngoi 32920 . . . 4 (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd𝐾) ↾ ((ran (1st𝐾) ∖ {(GId‘(1st𝐾))}) × (ran (1st𝐾) ∖ {(GId‘(1st𝐾))}))) ∈ GrpOp))
65simpld 474 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps)
76anim1i 590 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
8 df-fld 32961 . . 3 Fld = (DivRingOps ∩ Com2)
98elin2 3763 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
10 iscrngo 32965 . 2 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
117, 9, 103imtr4i 280 1 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  cdif 3537  {csn 4125   × cxp 5036  ran crn 5039  cres 5040  cfv 5804  1st c1st 7057  2nd c2nd 7058  GrpOpcgr 26727  GIdcgi 26728  RingOpscrngo 32863  DivRingOpscdrng 32917  Com2ccm2 32958  Fldcfld 32960  CRingOpsccring 32962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-1st 7059  df-2nd 7060  df-drngo 32918  df-fld 32961  df-crngo 32963
This theorem is referenced by:  isfld2  32974  isfldidl  33037
  Copyright terms: Public domain W3C validator