Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fival Structured version   Visualization version   GIF version

Theorem fival 8201
 Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fival
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpr 476 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
3 inss1 3795 . . . . . . . . . 10 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
43sseli 3564 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
54elpwid 4118 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
6 eqvisset 3184 . . . . . . . . 9 (𝑦 = 𝑥 𝑥 ∈ V)
7 intex 4747 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
86, 7sylibr 223 . . . . . . . 8 (𝑦 = 𝑥𝑥 ≠ ∅)
9 intssuni2 4437 . . . . . . . 8 ((𝑥𝐴𝑥 ≠ ∅) → 𝑥 𝐴)
105, 8, 9syl2an 493 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 𝐴)
112, 10eqsstrd 3602 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 𝐴)
12 selpw 4115 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
1311, 12sylibr 223 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝒫 𝐴)
1413rexlimiva 3010 . . . 4 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴)
1514abssi 3640 . . 3 {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴
16 uniexg 6853 . . . 4 (𝐴𝑉 𝐴 ∈ V)
17 pwexg 4776 . . . 4 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V)
1816, 17syl 17 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
19 ssexg 4732 . . 3 (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
2015, 18, 19sylancr 694 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
21 pweq 4111 . . . . . 6 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
2221ineq1d 3775 . . . . 5 (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
2322rexeqdv 3122 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥))
2423abbidv 2728 . . 3 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
25 df-fi 8200 . . 3 fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥})
2624, 25fvmptg 6189 . 2 ((𝐴 ∈ V ∧ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V) → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
271, 20, 26syl2anc 691 1 (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372  ∩ cint 4410  ‘cfv 5804  Fincfn 7841  ficfi 8199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-fi 8200 This theorem is referenced by:  elfi  8202  fi0  8209
 Copyright terms: Public domain W3C validator