Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelros Structured version   Visualization version   GIF version

Theorem fiunelros 29564
 Description: A ring of sets is closed under finite union. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
fiunelros.1 (𝜑𝑆𝑄)
fiunelros.2 (𝜑𝑁 ∈ ℕ)
fiunelros.3 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
Assertion
Ref Expression
fiunelros (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦   𝑘,𝑁   𝑆,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥,𝑦,𝑘,𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦,𝑘)

Proof of Theorem fiunelros
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiunelros.2 . 2 (𝜑𝑁 ∈ ℕ)
2 simpr 476 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
32nnred 10912 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
43leidd 10473 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁𝑁)
5 breq1 4586 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ≤ 𝑁))
6 oveq2 6557 . . . . . . 7 (𝑛 = 1 → (1..^𝑛) = (1..^1))
76iuneq1d 4481 . . . . . 6 (𝑛 = 1 → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^1)𝐵)
87eleq1d 2672 . . . . 5 (𝑛 = 1 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^1)𝐵𝑆))
95, 8imbi12d 333 . . . 4 (𝑛 = 1 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆)))
10 breq1 4586 . . . . 5 (𝑛 = 𝑖 → (𝑛𝑁𝑖𝑁))
11 oveq2 6557 . . . . . . 7 (𝑛 = 𝑖 → (1..^𝑛) = (1..^𝑖))
1211iuneq1d 4481 . . . . . 6 (𝑛 = 𝑖 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑖)𝐵)
1312eleq1d 2672 . . . . 5 (𝑛 = 𝑖 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑖)𝐵𝑆))
1410, 13imbi12d 333 . . . 4 (𝑛 = 𝑖 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)))
15 breq1 4586 . . . . 5 (𝑛 = (𝑖 + 1) → (𝑛𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
16 oveq2 6557 . . . . . . 7 (𝑛 = (𝑖 + 1) → (1..^𝑛) = (1..^(𝑖 + 1)))
1716iuneq1d 4481 . . . . . 6 (𝑛 = (𝑖 + 1) → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^(𝑖 + 1))𝐵)
1817eleq1d 2672 . . . . 5 (𝑛 = (𝑖 + 1) → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
1915, 18imbi12d 333 . . . 4 (𝑛 = (𝑖 + 1) → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)))
20 breq1 4586 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
21 oveq2 6557 . . . . . . 7 (𝑛 = 𝑁 → (1..^𝑛) = (1..^𝑁))
2221iuneq1d 4481 . . . . . 6 (𝑛 = 𝑁 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑁)𝐵)
2322eleq1d 2672 . . . . 5 (𝑛 = 𝑁 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑁)𝐵𝑆))
2420, 23imbi12d 333 . . . 4 (𝑛 = 𝑁 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆)))
25 fzo0 12361 . . . . . . . 8 (1..^1) = ∅
26 iuneq1 4470 . . . . . . . 8 ((1..^1) = ∅ → 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵)
2725, 26ax-mp 5 . . . . . . 7 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵
28 0iun 4513 . . . . . . 7 𝑘 ∈ ∅ 𝐵 = ∅
2927, 28eqtri 2632 . . . . . 6 𝑘 ∈ (1..^1)𝐵 = ∅
30 fiunelros.1 . . . . . . 7 (𝜑𝑆𝑄)
31 isros.1 . . . . . . . 8 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
32310elros 29560 . . . . . . 7 (𝑆𝑄 → ∅ ∈ 𝑆)
3330, 32syl 17 . . . . . 6 (𝜑 → ∅ ∈ 𝑆)
3429, 33syl5eqel 2692 . . . . 5 (𝜑 𝑘 ∈ (1..^1)𝐵𝑆)
3534a1d 25 . . . 4 (𝜑 → (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆))
36 simpllr 795 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℕ)
37 fzosplitsn 12442 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
38 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
3937, 38eleq2s 2706 . . . . . . . . 9 (𝑖 ∈ ℕ → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
4039iuneq1d 4481 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
4136, 40syl 17 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
42 iunxun 4541 . . . . . . 7 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵)
4341, 42syl6eq 2660 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵))
4430ad3antrrr 762 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑆𝑄)
4536nnred 10912 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℝ)
461ad3antrrr 762 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
4746nnred 10912 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
48 simpr 476 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 + 1) ≤ 𝑁)
49 nnltp1le 11310 . . . . . . . . . . 11 ((𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5036, 46, 49syl2anc 691 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5148, 50mpbird 246 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 < 𝑁)
5245, 47, 51ltled 10064 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖𝑁)
53 simplr 788 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆))
5452, 53mpd 15 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^𝑖)𝐵𝑆)
55 nfcsb1v 3515 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵
56 csbeq1a 3508 . . . . . . . . . 10 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5755, 56iunxsngf 28758 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
5836, 57syl 17 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
59 simplll 794 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝜑)
60 elfzo1 12385 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) ↔ (𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
6136, 46, 51, 60syl3anbrc 1239 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ (1..^𝑁))
62 nfv 1830 . . . . . . . . . . 11 𝑘(𝜑𝑖 ∈ (1..^𝑁))
63 nfcv 2751 . . . . . . . . . . . 12 𝑘𝑆
6455, 63nfel 2763 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵𝑆
6562, 64nfim 1813 . . . . . . . . . 10 𝑘((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
66 eleq1 2676 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 ∈ (1..^𝑁) ↔ 𝑖 ∈ (1..^𝑁)))
6766anbi2d 736 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝜑𝑘 ∈ (1..^𝑁)) ↔ (𝜑𝑖 ∈ (1..^𝑁))))
6856eleq1d 2672 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
6967, 68imbi12d 333 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆) ↔ ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)))
70 fiunelros.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
7165, 69, 70chvar 2250 . . . . . . . . 9 ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
7259, 61, 71syl2anc 691 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 / 𝑘𝐵𝑆)
7358, 72eqeltrd 2688 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵𝑆)
7431unelros 29561 . . . . . . 7 ((𝑆𝑄 𝑘 ∈ (1..^𝑖)𝐵𝑆 𝑘 ∈ {𝑖}𝐵𝑆) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7544, 54, 73, 74syl3anc 1318 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7643, 75eqeltrd 2688 . . . . 5 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)
7776ex 449 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) → ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
789, 14, 19, 24, 35, 77nnindd 28953 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆))
794, 78mpd 15 . 2 ((𝜑𝑁 ∈ ℕ) → 𝑘 ∈ (1..^𝑁)𝐵𝑆)
801, 79mpdan 699 1 (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  ⦋csb 3499   ∖ cdif 3537   ∪ cun 3538  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ ciun 4455   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954  ℕcn 10897  ℤ≥cuz 11563  ..^cfzo 12334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator