Step | Hyp | Ref
| Expression |
1 | | pwexg 4776 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V) |
3 | | pwexg 4776 |
. . 3
⊢
(𝒫 𝐴 ∈
V → 𝒫 𝒫 𝐴 ∈ V) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫
𝐴 ∈
V) |
5 | | ssrab2 3650 |
. . . . 5
⊢ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴 |
6 | | elpw2g 4754 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
V → ({𝑑 ∈
𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
7 | 2, 6 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
8 | 5, 7 | mpbiri 247 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴) |
9 | 8 | a1d 25 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴)) |
10 | | isinf 8058 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin →
∀𝑏 ∈ ω
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
11 | 10 | r19.21bi 2916 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑏 ∈ ω) →
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
12 | 11 | ad2ant2lr 780 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
13 | | selpw 4115 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝒫 𝐴 ↔ 𝑒 ⊆ 𝐴) |
14 | 13 | biimpri 217 |
. . . . . . . . . 10
⊢ (𝑒 ⊆ 𝐴 → 𝑒 ∈ 𝒫 𝐴) |
15 | 14 | anim1i 590 |
. . . . . . . . 9
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
16 | | breq1 4586 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑏 ↔ 𝑒 ≈ 𝑏)) |
17 | 16 | elrab 3331 |
. . . . . . . . 9
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
18 | 15, 17 | sylibr 223 |
. . . . . . . 8
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
19 | 18 | eximi 1752 |
. . . . . . 7
⊢
(∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
20 | 12, 19 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
21 | | eleq2 2677 |
. . . . . . . . 9
⊢ ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
22 | 21 | biimpcd 238 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
23 | 22 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
24 | 17 | simprbi 479 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → 𝑒 ≈ 𝑏) |
25 | | breq1 4586 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑐 ↔ 𝑒 ≈ 𝑐)) |
26 | 25 | elrab 3331 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑐)) |
27 | 26 | simprbi 479 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ≈ 𝑐) |
28 | | ensym 7891 |
. . . . . . . . . . 11
⊢ (𝑒 ≈ 𝑏 → 𝑏 ≈ 𝑒) |
29 | | entr 7894 |
. . . . . . . . . . 11
⊢ ((𝑏 ≈ 𝑒 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
30 | 28, 29 | sylan 487 |
. . . . . . . . . 10
⊢ ((𝑒 ≈ 𝑏 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
31 | 24, 27, 30 | syl2an 493 |
. . . . . . . . 9
⊢ ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) → 𝑏 ≈ 𝑐) |
32 | 31 | ex 449 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
33 | 32 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
34 | | nneneq 8028 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 ↔ 𝑏 = 𝑐)) |
35 | 34 | biimpd 218 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
36 | 35 | ad2antlr 759 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
37 | 23, 33, 36 | 3syld 58 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
38 | 20, 37 | exlimddv 1850 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
39 | | breq2 4587 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (𝑑 ≈ 𝑏 ↔ 𝑑 ≈ 𝑐)) |
40 | 39 | rabbidv 3164 |
. . . . 5
⊢ (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) |
41 | 38, 40 | impbid1 214 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐)) |
42 | 41 | ex 449 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐))) |
43 | 9, 42 | dom2d 7882 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫
𝐴 ∈ V → ω
≼ 𝒫 𝒫 𝐴)) |
44 | 4, 43 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼
𝒫 𝒫 𝐴) |