MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqvlem Structured version   Visualization version   GIF version

Theorem fineqvlem 8059
Description: Lemma for fineqv 8060. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fineqvlem ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)

Proof of Theorem fineqvlem
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4776 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
3 pwexg 4776 . . 3 (𝒫 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V)
42, 3syl 17 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫 𝐴 ∈ V)
5 ssrab2 3650 . . . . 5 {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴
6 elpw2g 4754 . . . . . 6 (𝒫 𝐴 ∈ V → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
72, 6syl 17 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
85, 7mpbiri 247 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴)
98a1d 25 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴))
10 isinf 8058 . . . . . . . . 9 𝐴 ∈ Fin → ∀𝑏 ∈ ω ∃𝑒(𝑒𝐴𝑒𝑏))
1110r19.21bi 2916 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω) → ∃𝑒(𝑒𝐴𝑒𝑏))
1211ad2ant2lr 780 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒𝐴𝑒𝑏))
13 selpw 4115 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝐴𝑒𝐴)
1413biimpri 217 . . . . . . . . . 10 (𝑒𝐴𝑒 ∈ 𝒫 𝐴)
1514anim1i 590 . . . . . . . . 9 ((𝑒𝐴𝑒𝑏) → (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
16 breq1 4586 . . . . . . . . . 10 (𝑑 = 𝑒 → (𝑑𝑏𝑒𝑏))
1716elrab 3331 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
1815, 17sylibr 223 . . . . . . . 8 ((𝑒𝐴𝑒𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1918eximi 1752 . . . . . . 7 (∃𝑒(𝑒𝐴𝑒𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
2012, 19syl 17 . . . . . 6 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
21 eleq2 2677 . . . . . . . . 9 ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2221biimpcd 238 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2322adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2417simprbi 479 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → 𝑒𝑏)
25 breq1 4586 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (𝑑𝑐𝑒𝑐))
2625elrab 3331 . . . . . . . . . . 11 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑐))
2726simprbi 479 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒𝑐)
28 ensym 7891 . . . . . . . . . . 11 (𝑒𝑏𝑏𝑒)
29 entr 7894 . . . . . . . . . . 11 ((𝑏𝑒𝑒𝑐) → 𝑏𝑐)
3028, 29sylan 487 . . . . . . . . . 10 ((𝑒𝑏𝑒𝑐) → 𝑏𝑐)
3124, 27, 30syl2an 493 . . . . . . . . 9 ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}) → 𝑏𝑐)
3231ex 449 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
3332adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
34 nneneq 8028 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3534biimpd 218 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3635ad2antlr 759 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑏𝑐𝑏 = 𝑐))
3723, 33, 363syld 58 . . . . . 6 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
3820, 37exlimddv 1850 . . . . 5 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
39 breq2 4587 . . . . . 6 (𝑏 = 𝑐 → (𝑑𝑏𝑑𝑐))
4039rabbidv 3164 . . . . 5 (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐})
4138, 40impbid1 214 . . . 4 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐))
4241ex 449 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐)))
439, 42dom2d 7882 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴))
444, 43mpd 15 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108   class class class wbr 4583  ωcom 6957  cen 7838  cdom 7839  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-er 7629  df-en 7842  df-dom 7843  df-fin 7845
This theorem is referenced by:  fineqv  8060  isfin1-2  9090
  Copyright terms: Public domain W3C validator