MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem33 Structured version   Visualization version   GIF version

Theorem fin23lem33 9050
Description: Lemma for fin23 9094. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem33 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐺   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑏)

Proof of Theorem fin23lem33
Dummy variables 𝑐 𝑑 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . 7 (𝑗 = 𝑐 → (𝑒𝑗) = (𝑒𝑐))
21ineq1d 3775 . . . . . 6 (𝑗 = 𝑐 → ((𝑒𝑗) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑘))
32eqeq1d 2612 . . . . 5 (𝑗 = 𝑐 → (((𝑒𝑗) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑘) = ∅))
43, 2ifbieq2d 4061 . . . 4 (𝑗 = 𝑐 → if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)))
5 ineq2 3770 . . . . . 6 (𝑘 = 𝑑 → ((𝑒𝑐) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑑))
65eqeq1d 2612 . . . . 5 (𝑘 = 𝑑 → (((𝑒𝑐) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑑) = ∅))
7 id 22 . . . . 5 (𝑘 = 𝑑𝑘 = 𝑑)
86, 7, 5ifbieq12d 4063 . . . 4 (𝑘 = 𝑑 → if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
94, 8cbvmpt2v 6633 . . 3 (𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
10 eqid 2610 . . 3 ran 𝑒 = ran 𝑒
11 seqomeq12 7436 . . 3 (((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))) ∧ ran 𝑒 = ran 𝑒) → seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seq𝜔((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒))
129, 10, 11mp2an 704 . 2 seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seq𝜔((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒)
13 fin23lem33.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
14 fveq2 6103 . . . 4 (𝑙 = 𝑦 → (𝑒𝑙) = (𝑒𝑦))
1514sseq2d 3596 . . 3 (𝑙 = 𝑦 → ( ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙) ↔ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)))
1615cbvrabv 3172 . 2 {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} = {𝑦 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)}
17 eqid 2610 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))
18 eqid 2610 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))
19 eqid 2610 . 2 if({𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)))) = if({𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seq𝜔((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))))
2012, 13, 16, 17, 18, 19fin23lem32 9049 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  wss 3540  wpss 3541  c0 3874  ifcif 4036  𝒫 cpw 4108   cuni 4372   cint 4410   class class class wbr 4583  cmpt 4643  ran crn 5039  ccom 5042  suc csuc 5642  1-1wf1 5801  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  ωcom 6957  seq𝜔cseqom 7429  𝑚 cmap 7744  cen 7838  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648
This theorem is referenced by:  fin23lem41  9057
  Copyright terms: Public domain W3C validator