Step | Hyp | Ref
| Expression |
1 | | fin23lem26 9030 |
. 2
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) →
∃𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) |
2 | | ensym 7891 |
. . . . . 6
⊢ ((𝑎 ∩ 𝑆) ≈ 𝑖 → 𝑖 ≈ (𝑎 ∩ 𝑆)) |
3 | | entr 7894 |
. . . . . 6
⊢ (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ 𝑖 ≈ (𝑎 ∩ 𝑆)) → (𝑗 ∩ 𝑆) ≈ (𝑎 ∩ 𝑆)) |
4 | 2, 3 | sylan2 490 |
. . . . 5
⊢ (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ (𝑎 ∩ 𝑆) ≈ 𝑖) → (𝑗 ∩ 𝑆) ≈ (𝑎 ∩ 𝑆)) |
5 | | simpl 472 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → 𝑆 ⊆ ω) |
6 | | simprl 790 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → 𝑗 ∈ 𝑆) |
7 | 5, 6 | sseldd 3569 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → 𝑗 ∈ ω) |
8 | | nnfi 8038 |
. . . . . . . . 9
⊢ (𝑗 ∈ ω → 𝑗 ∈ Fin) |
9 | | inss1 3795 |
. . . . . . . . 9
⊢ (𝑗 ∩ 𝑆) ⊆ 𝑗 |
10 | | ssfi 8065 |
. . . . . . . . 9
⊢ ((𝑗 ∈ Fin ∧ (𝑗 ∩ 𝑆) ⊆ 𝑗) → (𝑗 ∩ 𝑆) ∈ Fin) |
11 | 8, 9, 10 | sylancl 693 |
. . . . . . . 8
⊢ (𝑗 ∈ ω → (𝑗 ∩ 𝑆) ∈ Fin) |
12 | 7, 11 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → (𝑗 ∩ 𝑆) ∈ Fin) |
13 | | simprr 792 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → 𝑎 ∈ 𝑆) |
14 | 5, 13 | sseldd 3569 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → 𝑎 ∈ ω) |
15 | | nnfi 8038 |
. . . . . . . . 9
⊢ (𝑎 ∈ ω → 𝑎 ∈ Fin) |
16 | | inss1 3795 |
. . . . . . . . 9
⊢ (𝑎 ∩ 𝑆) ⊆ 𝑎 |
17 | | ssfi 8065 |
. . . . . . . . 9
⊢ ((𝑎 ∈ Fin ∧ (𝑎 ∩ 𝑆) ⊆ 𝑎) → (𝑎 ∩ 𝑆) ∈ Fin) |
18 | 15, 16, 17 | sylancl 693 |
. . . . . . . 8
⊢ (𝑎 ∈ ω → (𝑎 ∩ 𝑆) ∈ Fin) |
19 | 14, 18 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → (𝑎 ∩ 𝑆) ∈ Fin) |
20 | | nnord 6965 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ω → Ord 𝑗) |
21 | | nnord 6965 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ω → Ord 𝑎) |
22 | | ordtri2or2 5740 |
. . . . . . . . . 10
⊢ ((Ord
𝑗 ∧ Ord 𝑎) → (𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗)) |
23 | 20, 21, 22 | syl2an 493 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ 𝑎 ∈ ω) → (𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗)) |
24 | 7, 14, 23 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → (𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗)) |
25 | | ssrin 3800 |
. . . . . . . . 9
⊢ (𝑗 ⊆ 𝑎 → (𝑗 ∩ 𝑆) ⊆ (𝑎 ∩ 𝑆)) |
26 | | ssrin 3800 |
. . . . . . . . 9
⊢ (𝑎 ⊆ 𝑗 → (𝑎 ∩ 𝑆) ⊆ (𝑗 ∩ 𝑆)) |
27 | 25, 26 | orim12i 537 |
. . . . . . . 8
⊢ ((𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗) → ((𝑗 ∩ 𝑆) ⊆ (𝑎 ∩ 𝑆) ∨ (𝑎 ∩ 𝑆) ⊆ (𝑗 ∩ 𝑆))) |
28 | 24, 27 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → ((𝑗 ∩ 𝑆) ⊆ (𝑎 ∩ 𝑆) ∨ (𝑎 ∩ 𝑆) ⊆ (𝑗 ∩ 𝑆))) |
29 | | fin23lem25 9029 |
. . . . . . 7
⊢ (((𝑗 ∩ 𝑆) ∈ Fin ∧ (𝑎 ∩ 𝑆) ∈ Fin ∧ ((𝑗 ∩ 𝑆) ⊆ (𝑎 ∩ 𝑆) ∨ (𝑎 ∩ 𝑆) ⊆ (𝑗 ∩ 𝑆))) → ((𝑗 ∩ 𝑆) ≈ (𝑎 ∩ 𝑆) ↔ (𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆))) |
30 | 12, 19, 28, 29 | syl3anc 1318 |
. . . . . 6
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → ((𝑗 ∩ 𝑆) ≈ (𝑎 ∩ 𝑆) ↔ (𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆))) |
31 | | ordom 6966 |
. . . . . . 7
⊢ Ord
ω |
32 | | fin23lem24 9027 |
. . . . . . 7
⊢ (((Ord
ω ∧ 𝑆 ⊆
ω) ∧ (𝑗 ∈
𝑆 ∧ 𝑎 ∈ 𝑆)) → ((𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆) ↔ 𝑗 = 𝑎)) |
33 | 31, 32 | mpanl1 712 |
. . . . . 6
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → ((𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆) ↔ 𝑗 = 𝑎)) |
34 | 30, 33 | bitrd 267 |
. . . . 5
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → ((𝑗 ∩ 𝑆) ≈ (𝑎 ∩ 𝑆) ↔ 𝑗 = 𝑎)) |
35 | 4, 34 | syl5ib 233 |
. . . 4
⊢ ((𝑆 ⊆ ω ∧ (𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆)) → (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ (𝑎 ∩ 𝑆) ≈ 𝑖) → 𝑗 = 𝑎)) |
36 | 35 | ralrimivva 2954 |
. . 3
⊢ (𝑆 ⊆ ω →
∀𝑗 ∈ 𝑆 ∀𝑎 ∈ 𝑆 (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ (𝑎 ∩ 𝑆) ≈ 𝑖) → 𝑗 = 𝑎)) |
37 | 36 | ad2antrr 758 |
. 2
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) →
∀𝑗 ∈ 𝑆 ∀𝑎 ∈ 𝑆 (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ (𝑎 ∩ 𝑆) ≈ 𝑖) → 𝑗 = 𝑎)) |
38 | | ineq1 3769 |
. . . 4
⊢ (𝑗 = 𝑎 → (𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆)) |
39 | 38 | breq1d 4593 |
. . 3
⊢ (𝑗 = 𝑎 → ((𝑗 ∩ 𝑆) ≈ 𝑖 ↔ (𝑎 ∩ 𝑆) ≈ 𝑖)) |
40 | 39 | reu4 3367 |
. 2
⊢
(∃!𝑗 ∈
𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖 ↔ (∃𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖 ∧ ∀𝑗 ∈ 𝑆 ∀𝑎 ∈ 𝑆 (((𝑗 ∩ 𝑆) ≈ 𝑖 ∧ (𝑎 ∩ 𝑆) ≈ 𝑖) → 𝑗 = 𝑎))) |
41 | 1, 37, 40 | sylanbrc 695 |
1
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) →
∃!𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) |