Step | Hyp | Ref
| Expression |
1 | | fin23lem.a |
. . . . . 6
⊢ 𝑈 =
seq𝜔((𝑖
∈ ω, 𝑢 ∈ V
↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
2 | 1 | fnseqom 7437 |
. . . . 5
⊢ 𝑈 Fn ω |
3 | | dffn3 5967 |
. . . . 5
⊢ (𝑈 Fn ω ↔ 𝑈:ω⟶ran 𝑈) |
4 | 2, 3 | mpbi 219 |
. . . 4
⊢ 𝑈:ω⟶ran 𝑈 |
5 | | pwuni 4825 |
. . . . 5
⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑈 |
6 | 1 | fin23lem16 9040 |
. . . . . 6
⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
7 | 6 | pweqi 4112 |
. . . . 5
⊢ 𝒫
∪ ran 𝑈 = 𝒫 ∪
ran 𝑡 |
8 | 5, 7 | sseqtri 3600 |
. . . 4
⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡 |
9 | | fss 5969 |
. . . 4
⊢ ((𝑈:ω⟶ran 𝑈 ∧ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡) → 𝑈:ω⟶𝒫 ∪ ran 𝑡) |
10 | 4, 8, 9 | mp2an 704 |
. . 3
⊢ 𝑈:ω⟶𝒫 ∪ ran 𝑡 |
11 | | vex 3176 |
. . . . . . 7
⊢ 𝑡 ∈ V |
12 | 11 | rnex 6992 |
. . . . . 6
⊢ ran 𝑡 ∈ V |
13 | 12 | uniex 6851 |
. . . . 5
⊢ ∪ ran 𝑡 ∈ V |
14 | 13 | pwex 4774 |
. . . 4
⊢ 𝒫
∪ ran 𝑡 ∈ V |
15 | | f1f 6014 |
. . . . . 6
⊢ (𝑡:ω–1-1→𝑉 → 𝑡:ω⟶𝑉) |
16 | | dmfex 7017 |
. . . . . 6
⊢ ((𝑡 ∈ V ∧ 𝑡:ω⟶𝑉) → ω ∈
V) |
17 | 11, 15, 16 | sylancr 694 |
. . . . 5
⊢ (𝑡:ω–1-1→𝑉 → ω ∈ V) |
18 | 17 | adantl 481 |
. . . 4
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ω ∈ V) |
19 | | elmapg 7757 |
. . . 4
⊢
((𝒫 ∪ ran 𝑡 ∈ V ∧ ω ∈ V) →
(𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚 ω) ↔
𝑈:ω⟶𝒫
∪ ran 𝑡)) |
20 | 14, 18, 19 | sylancr 694 |
. . 3
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → (𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚 ω) ↔
𝑈:ω⟶𝒫
∪ ran 𝑡)) |
21 | 10, 20 | mpbiri 247 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → 𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)) |
22 | | fin23lem17.f |
. . . . 5
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑𝑚
ω)(∀𝑥 ∈
ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran
𝑎 ∈ ran 𝑎)} |
23 | 22 | isfin3ds 9034 |
. . . 4
⊢ (∪ ran 𝑡 ∈ 𝐹 → (∪ ran
𝑡 ∈ 𝐹 ↔ ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏))) |
24 | 23 | ibi 255 |
. . 3
⊢ (∪ ran 𝑡 ∈ 𝐹 → ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏)) |
25 | 24 | adantr 480 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏)) |
26 | 1 | fin23lem13 9037 |
. . . 4
⊢ (𝑐 ∈ ω → (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐)) |
27 | 26 | rgen 2906 |
. . 3
⊢
∀𝑐 ∈
ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) |
28 | 27 | a1i 11 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐)) |
29 | | fveq1 6102 |
. . . . . 6
⊢ (𝑏 = 𝑈 → (𝑏‘suc 𝑐) = (𝑈‘suc 𝑐)) |
30 | | fveq1 6102 |
. . . . . 6
⊢ (𝑏 = 𝑈 → (𝑏‘𝑐) = (𝑈‘𝑐)) |
31 | 29, 30 | sseq12d 3597 |
. . . . 5
⊢ (𝑏 = 𝑈 → ((𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) ↔ (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐))) |
32 | 31 | ralbidv 2969 |
. . . 4
⊢ (𝑏 = 𝑈 → (∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) ↔ ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐))) |
33 | | rneq 5272 |
. . . . . 6
⊢ (𝑏 = 𝑈 → ran 𝑏 = ran 𝑈) |
34 | 33 | inteqd 4415 |
. . . . 5
⊢ (𝑏 = 𝑈 → ∩ ran
𝑏 = ∩ ran 𝑈) |
35 | 34, 33 | eleq12d 2682 |
. . . 4
⊢ (𝑏 = 𝑈 → (∩ ran
𝑏 ∈ ran 𝑏 ↔ ∩ ran 𝑈 ∈ ran 𝑈)) |
36 | 32, 35 | imbi12d 333 |
. . 3
⊢ (𝑏 = 𝑈 → ((∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏) ↔ (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) → ∩ ran
𝑈 ∈ ran 𝑈))) |
37 | 36 | rspcv 3278 |
. 2
⊢ (𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚 ω) →
(∀𝑏 ∈
(𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏) → (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) → ∩ ran
𝑈 ∈ ran 𝑈))) |
38 | 21, 25, 28, 37 | syl3c 64 |
1
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∩ ran
𝑈 ∈ ran 𝑈) |