MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Visualization version   GIF version

Theorem fin23lem14 9038
Description: Lemma for fin23 9094. 𝑈 will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem14 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑎 = ∅ → (𝑈𝑎) = (𝑈‘∅))
21neeq1d 2841 . . . 4 (𝑎 = ∅ → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘∅) ≠ ∅))
32imbi2d 329 . . 3 (𝑎 = ∅ → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)))
4 fveq2 6103 . . . . 5 (𝑎 = 𝑏 → (𝑈𝑎) = (𝑈𝑏))
54neeq1d 2841 . . . 4 (𝑎 = 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝑏) ≠ ∅))
65imbi2d 329 . . 3 (𝑎 = 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅)))
7 fveq2 6103 . . . . 5 (𝑎 = suc 𝑏 → (𝑈𝑎) = (𝑈‘suc 𝑏))
87neeq1d 2841 . . . 4 (𝑎 = suc 𝑏 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈‘suc 𝑏) ≠ ∅))
98imbi2d 329 . . 3 (𝑎 = suc 𝑏 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
10 fveq2 6103 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
1110neeq1d 2841 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
1211imbi2d 329 . . 3 (𝑎 = 𝐴 → (( ran 𝑡 ≠ ∅ → (𝑈𝑎) ≠ ∅) ↔ ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅)))
13 vex 3176 . . . . . . 7 𝑡 ∈ V
1413rnex 6992 . . . . . 6 ran 𝑡 ∈ V
1514uniex 6851 . . . . 5 ran 𝑡 ∈ V
16 fin23lem.a . . . . . 6 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1716seqom0g 7438 . . . . 5 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1815, 17mp1i 13 . . . 4 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) = ran 𝑡)
19 id 22 . . . 4 ( ran 𝑡 ≠ ∅ → ran 𝑡 ≠ ∅)
2018, 19eqnetrd 2849 . . 3 ( ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠ ∅)
2116fin23lem12 9036 . . . . . . 7 (𝑏 ∈ ω → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
2221adantr 480 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) = if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))))
23 iftrue 4042 . . . . . . . . 9 (((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
2423adantr 480 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = (𝑈𝑏))
25 simprr 792 . . . . . . . 8 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → (𝑈𝑏) ≠ ∅)
2624, 25eqnetrd 2849 . . . . . . 7 ((((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
27 iffalse 4045 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
2827adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) = ((𝑡𝑏) ∩ (𝑈𝑏)))
29 df-ne 2782 . . . . . . . . . 10 (((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅ ↔ ¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅)
3029biimpri 217 . . . . . . . . 9 (¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3130adantr 480 . . . . . . . 8 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → ((𝑡𝑏) ∩ (𝑈𝑏)) ≠ ∅)
3228, 31eqnetrd 2849 . . . . . . 7 ((¬ ((𝑡𝑏) ∩ (𝑈𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅)) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3326, 32pm2.61ian 827 . . . . . 6 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → if(((𝑡𝑏) ∩ (𝑈𝑏)) = ∅, (𝑈𝑏), ((𝑡𝑏) ∩ (𝑈𝑏))) ≠ ∅)
3422, 33eqnetrd 2849 . . . . 5 ((𝑏 ∈ ω ∧ (𝑈𝑏) ≠ ∅) → (𝑈‘suc 𝑏) ≠ ∅)
3534ex 449 . . . 4 (𝑏 ∈ ω → ((𝑈𝑏) ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))
3635imim2d 55 . . 3 (𝑏 ∈ ω → (( ran 𝑡 ≠ ∅ → (𝑈𝑏) ≠ ∅) → ( ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)))
373, 6, 9, 12, 20, 36finds 6984 . 2 (𝐴 ∈ ω → ( ran 𝑡 ≠ ∅ → (𝑈𝐴) ≠ ∅))
3837imp 444 1 ((𝐴 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cin 3539  c0 3874  ifcif 4036   cuni 4372  ran crn 5039  suc csuc 5642  cfv 5804  cmpt2 6551  ωcom 6957  seq𝜔cseqom 7429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430
This theorem is referenced by:  fin23lem21  9044
  Copyright terms: Public domain W3C validator