Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑈‘𝑎) = (𝑈‘∅)) |
2 | 1 | neeq1d 2841 |
. . . 4
⊢ (𝑎 = ∅ → ((𝑈‘𝑎) ≠ ∅ ↔ (𝑈‘∅) ≠
∅)) |
3 | 2 | imbi2d 329 |
. . 3
⊢ (𝑎 = ∅ → ((∪ ran 𝑡 ≠ ∅ → (𝑈‘𝑎) ≠ ∅) ↔ (∪ ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠
∅))) |
4 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑈‘𝑎) = (𝑈‘𝑏)) |
5 | 4 | neeq1d 2841 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝑈‘𝑎) ≠ ∅ ↔ (𝑈‘𝑏) ≠ ∅)) |
6 | 5 | imbi2d 329 |
. . 3
⊢ (𝑎 = 𝑏 → ((∪ ran
𝑡 ≠ ∅ →
(𝑈‘𝑎) ≠ ∅) ↔ (∪ ran 𝑡 ≠ ∅ → (𝑈‘𝑏) ≠ ∅))) |
7 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (𝑈‘𝑎) = (𝑈‘suc 𝑏)) |
8 | 7 | neeq1d 2841 |
. . . 4
⊢ (𝑎 = suc 𝑏 → ((𝑈‘𝑎) ≠ ∅ ↔ (𝑈‘suc 𝑏) ≠ ∅)) |
9 | 8 | imbi2d 329 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((∪ ran
𝑡 ≠ ∅ →
(𝑈‘𝑎) ≠ ∅) ↔ (∪ ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))) |
10 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑈‘𝑎) = (𝑈‘𝐴)) |
11 | 10 | neeq1d 2841 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑈‘𝑎) ≠ ∅ ↔ (𝑈‘𝐴) ≠ ∅)) |
12 | 11 | imbi2d 329 |
. . 3
⊢ (𝑎 = 𝐴 → ((∪ ran
𝑡 ≠ ∅ →
(𝑈‘𝑎) ≠ ∅) ↔ (∪ ran 𝑡 ≠ ∅ → (𝑈‘𝐴) ≠ ∅))) |
13 | | vex 3176 |
. . . . . . 7
⊢ 𝑡 ∈ V |
14 | 13 | rnex 6992 |
. . . . . 6
⊢ ran 𝑡 ∈ V |
15 | 14 | uniex 6851 |
. . . . 5
⊢ ∪ ran 𝑡 ∈ V |
16 | | fin23lem.a |
. . . . . 6
⊢ 𝑈 =
seq𝜔((𝑖
∈ ω, 𝑢 ∈ V
↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
17 | 16 | seqom0g 7438 |
. . . . 5
⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
18 | 15, 17 | mp1i 13 |
. . . 4
⊢ (∪ ran 𝑡 ≠ ∅ → (𝑈‘∅) = ∪ ran 𝑡) |
19 | | id 22 |
. . . 4
⊢ (∪ ran 𝑡 ≠ ∅ → ∪ ran 𝑡 ≠ ∅) |
20 | 18, 19 | eqnetrd 2849 |
. . 3
⊢ (∪ ran 𝑡 ≠ ∅ → (𝑈‘∅) ≠
∅) |
21 | 16 | fin23lem12 9036 |
. . . . . . 7
⊢ (𝑏 ∈ ω → (𝑈‘suc 𝑏) = if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏)))) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅) → (𝑈‘suc 𝑏) = if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏)))) |
23 | | iftrue 4042 |
. . . . . . . . 9
⊢ (((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) = (𝑈‘𝑏)) |
24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) = (𝑈‘𝑏)) |
25 | | simprr 792 |
. . . . . . . 8
⊢ ((((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → (𝑈‘𝑏) ≠ ∅) |
26 | 24, 25 | eqnetrd 2849 |
. . . . . . 7
⊢ ((((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) ≠ ∅) |
27 | | iffalse 4045 |
. . . . . . . . 9
⊢ (¬
((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) = ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((¬
((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) = ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) |
29 | | df-ne 2782 |
. . . . . . . . . 10
⊢ (((𝑡‘𝑏) ∩ (𝑈‘𝑏)) ≠ ∅ ↔ ¬ ((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅) |
30 | 29 | biimpri 217 |
. . . . . . . . 9
⊢ (¬
((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ → ((𝑡‘𝑏) ∩ (𝑈‘𝑏)) ≠ ∅) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((¬
((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → ((𝑡‘𝑏) ∩ (𝑈‘𝑏)) ≠ ∅) |
32 | 28, 31 | eqnetrd 2849 |
. . . . . . 7
⊢ ((¬
((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅ ∧ (𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅)) → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) ≠ ∅) |
33 | 26, 32 | pm2.61ian 827 |
. . . . . 6
⊢ ((𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅) → if(((𝑡‘𝑏) ∩ (𝑈‘𝑏)) = ∅, (𝑈‘𝑏), ((𝑡‘𝑏) ∩ (𝑈‘𝑏))) ≠ ∅) |
34 | 22, 33 | eqnetrd 2849 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (𝑈‘𝑏) ≠ ∅) → (𝑈‘suc 𝑏) ≠ ∅) |
35 | 34 | ex 449 |
. . . 4
⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅)) |
36 | 35 | imim2d 55 |
. . 3
⊢ (𝑏 ∈ ω → ((∪ ran 𝑡 ≠ ∅ → (𝑈‘𝑏) ≠ ∅) → (∪ ran 𝑡 ≠ ∅ → (𝑈‘suc 𝑏) ≠ ∅))) |
37 | 3, 6, 9, 12, 20, 36 | finds 6984 |
. 2
⊢ (𝐴 ∈ ω → (∪ ran 𝑡 ≠ ∅ → (𝑈‘𝐴) ≠ ∅)) |
38 | 37 | imp 444 |
1
⊢ ((𝐴 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅) → (𝑈‘𝐴) ≠ ∅) |