MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem11 Structured version   Visualization version   GIF version

Theorem fin23lem11 9022
Description: Lemma for isfin2-2 9024. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Hypotheses
Ref Expression
fin23lem11.1 (𝑧 = (𝐴𝑥) → (𝜓𝜒))
fin23lem11.2 (𝑤 = (𝐴𝑣) → (𝜑𝜃))
fin23lem11.3 ((𝑥𝐴𝑣𝐴) → (𝜒𝜃))
Assertion
Ref Expression
fin23lem11 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓))
Distinct variable groups:   𝑣,𝑐,𝑤,𝑥,𝑧,𝐴   𝐵,𝑐,𝑣,𝑤,𝑥,𝑧   𝜒,𝑧   𝜑,𝑣   𝜓,𝑥   𝜃,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤,𝑐)   𝜓(𝑧,𝑤,𝑣,𝑐)   𝜒(𝑥,𝑤,𝑣,𝑐)   𝜃(𝑥,𝑧,𝑣,𝑐)

Proof of Theorem fin23lem11
StepHypRef Expression
1 difeq2 3684 . . . . 5 (𝑐 = 𝑥 → (𝐴𝑐) = (𝐴𝑥))
21eleq1d 2672 . . . 4 (𝑐 = 𝑥 → ((𝐴𝑐) ∈ 𝐵 ↔ (𝐴𝑥) ∈ 𝐵))
32elrab 3331 . . 3 (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵))
4 simp2r 1081 . . . . 5 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → (𝐴𝑥) ∈ 𝐵)
5 difss 3699 . . . . . . . . . 10 (𝐴𝑣) ⊆ 𝐴
6 ssun1 3738 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴𝑥)
7 undif1 3995 . . . . . . . . . . . . 13 ((𝐴𝑥) ∪ 𝑥) = (𝐴𝑥)
86, 7sseqtr4i 3601 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴𝑥) ∪ 𝑥)
9 simpl2r 1108 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑥) ∈ 𝐵)
10 simpl2l 1107 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑥 ∈ 𝒫 𝐴)
11 unexg 6857 . . . . . . . . . . . . 13 (((𝐴𝑥) ∈ 𝐵𝑥 ∈ 𝒫 𝐴) → ((𝐴𝑥) ∪ 𝑥) ∈ V)
129, 10, 11syl2anc 691 . . . . . . . . . . . 12 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ((𝐴𝑥) ∪ 𝑥) ∈ V)
13 ssexg 4732 . . . . . . . . . . . 12 ((𝐴 ⊆ ((𝐴𝑥) ∪ 𝑥) ∧ ((𝐴𝑥) ∪ 𝑥) ∈ V) → 𝐴 ∈ V)
148, 12, 13sylancr 694 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝐴 ∈ V)
15 elpw2g 4754 . . . . . . . . . . 11 (𝐴 ∈ V → ((𝐴𝑣) ∈ 𝒫 𝐴 ↔ (𝐴𝑣) ⊆ 𝐴))
1614, 15syl 17 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ((𝐴𝑣) ∈ 𝒫 𝐴 ↔ (𝐴𝑣) ⊆ 𝐴))
175, 16mpbiri 247 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑣) ∈ 𝒫 𝐴)
18 simpl1 1057 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝐵 ⊆ 𝒫 𝐴)
19 simpr 476 . . . . . . . . . . . . 13 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣𝐵)
2018, 19sseldd 3569 . . . . . . . . . . . 12 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
2120elpwid 4118 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → 𝑣𝐴)
22 dfss4 3820 . . . . . . . . . . 11 (𝑣𝐴 ↔ (𝐴 ∖ (𝐴𝑣)) = 𝑣)
2321, 22sylib 207 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴 ∖ (𝐴𝑣)) = 𝑣)
2423, 19eqeltrd 2688 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵)
25 difeq2 3684 . . . . . . . . . . 11 (𝑐 = (𝐴𝑣) → (𝐴𝑐) = (𝐴 ∖ (𝐴𝑣)))
2625eleq1d 2672 . . . . . . . . . 10 (𝑐 = (𝐴𝑣) → ((𝐴𝑐) ∈ 𝐵 ↔ (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵))
2726elrab 3331 . . . . . . . . 9 ((𝐴𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ↔ ((𝐴𝑣) ∈ 𝒫 𝐴 ∧ (𝐴 ∖ (𝐴𝑣)) ∈ 𝐵))
2817, 24, 27sylanbrc 695 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (𝐴𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
29 simpl3 1059 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑)
30 fin23lem11.2 . . . . . . . . . 10 (𝑤 = (𝐴𝑣) → (𝜑𝜃))
3130notbid 307 . . . . . . . . 9 (𝑤 = (𝐴𝑣) → (¬ 𝜑 ↔ ¬ 𝜃))
3231rspcva 3280 . . . . . . . 8 (((𝐴𝑣) ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → ¬ 𝜃)
3328, 29, 32syl2anc 691 . . . . . . 7 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ¬ 𝜃)
34 simplrl 796 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑥 ∈ 𝒫 𝐴)
3534elpwid 4118 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑥𝐴)
36 ssel2 3563 . . . . . . . . . . . 12 ((𝐵 ⊆ 𝒫 𝐴𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
3736adantlr 747 . . . . . . . . . . 11 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑣 ∈ 𝒫 𝐴)
3837elpwid 4118 . . . . . . . . . 10 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → 𝑣𝐴)
39 fin23lem11.3 . . . . . . . . . 10 ((𝑥𝐴𝑣𝐴) → (𝜒𝜃))
4035, 38, 39syl2anc 691 . . . . . . . . 9 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → (𝜒𝜃))
4140notbid 307 . . . . . . . 8 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵)) ∧ 𝑣𝐵) → (¬ 𝜒 ↔ ¬ 𝜃))
42413adantl3 1212 . . . . . . 7 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → (¬ 𝜒 ↔ ¬ 𝜃))
4333, 42mpbird 246 . . . . . 6 (((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) ∧ 𝑣𝐵) → ¬ 𝜒)
4443ralrimiva 2949 . . . . 5 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → ∀𝑣𝐵 ¬ 𝜒)
45 fin23lem11.1 . . . . . . . 8 (𝑧 = (𝐴𝑥) → (𝜓𝜒))
4645notbid 307 . . . . . . 7 (𝑧 = (𝐴𝑥) → (¬ 𝜓 ↔ ¬ 𝜒))
4746ralbidv 2969 . . . . . 6 (𝑧 = (𝐴𝑥) → (∀𝑣𝐵 ¬ 𝜓 ↔ ∀𝑣𝐵 ¬ 𝜒))
4847rspcev 3282 . . . . 5 (((𝐴𝑥) ∈ 𝐵 ∧ ∀𝑣𝐵 ¬ 𝜒) → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)
494, 44, 48syl2anc 691 . . . 4 ((𝐵 ⊆ 𝒫 𝐴 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) ∧ ∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑) → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)
50493exp 1256 . . 3 (𝐵 ⊆ 𝒫 𝐴 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴𝑥) ∈ 𝐵) → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)))
513, 50syl5bi 231 . 2 (𝐵 ⊆ 𝒫 𝐴 → (𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} → (∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓)))
5251rexlimdv 3012 1 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑥 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑤 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝜑 → ∃𝑧𝐵𝑣𝐵 ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373
This theorem is referenced by:  fin2i2  9023  isfin2-2  9024
  Copyright terms: Public domain W3C validator