Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin11a | Structured version Visualization version GIF version |
Description: Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin11a | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinIa) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4117 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | ssfi 8065 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
3 | 1, 2 | sylan2 490 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
4 | 3 | orcd 406 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
5 | 4 | ralrimiva 2949 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
6 | isfin1a 8997 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin))) | |
7 | 5, 6 | mpbird 246 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinIa) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ∖ cdif 3537 ⊆ wss 3540 𝒫 cpw 4108 Fincfn 7841 FinIacfin1a 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-om 6958 df-er 7629 df-en 7842 df-fin 7845 df-fin1a 8990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |