Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnm Structured version   Visualization version   GIF version

Theorem filnm 36678
 Description: Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
filnm.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
filnm ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM)

Proof of Theorem filnm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . 2 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LMod)
2 filnm.b . . . . . . . 8 𝐵 = (Base‘𝑊)
3 eqid 2610 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
42, 3lssss 18758 . . . . . . 7 (𝑎 ∈ (LSubSp‘𝑊) → 𝑎𝐵)
54adantl 481 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎𝐵)
6 selpw 4115 . . . . . 6 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
75, 6sylibr 223 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ 𝒫 𝐵)
8 simplr 788 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝐵 ∈ Fin)
9 ssfi 8065 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑎𝐵) → 𝑎 ∈ Fin)
108, 5, 9syl2anc 691 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ Fin)
117, 10elind 3760 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin))
12 eqid 2610 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
133, 12lspid 18803 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎)
1413adantlr 747 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎)
1514eqcomd 2616 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 = ((LSpan‘𝑊)‘𝑎))
16 fveq2 6103 . . . . . 6 (𝑏 = 𝑎 → ((LSpan‘𝑊)‘𝑏) = ((LSpan‘𝑊)‘𝑎))
1716eqeq2d 2620 . . . . 5 (𝑏 = 𝑎 → (𝑎 = ((LSpan‘𝑊)‘𝑏) ↔ 𝑎 = ((LSpan‘𝑊)‘𝑎)))
1817rspcev 3282 . . . 4 ((𝑎 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑎 = ((LSpan‘𝑊)‘𝑎)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
1911, 15, 18syl2anc 691 . . 3 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
2019ralrimiva 2949 . 2 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
212, 3, 12islnm2 36666 . 2 (𝑊 ∈ LNoeM ↔ (𝑊 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏)))
221, 20, 21sylanbrc 695 1 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  ‘cfv 5804  Fincfn 7841  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LNoeMclnm 36663 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lfig 36656  df-lnm 36664 This theorem is referenced by:  pwslnmlem0  36679
 Copyright terms: Public domain W3C validator