Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fileln0 | Structured version Visualization version GIF version |
Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
fileln0 | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ 𝐹) | |
2 | 0nelfil 21463 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹) | |
3 | nelne2 2879 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐹) → 𝐴 ≠ ∅) | |
4 | 1, 2, 3 | syl2anr 494 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 ‘cfv 5804 Filcfil 21459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-fbas 19564 df-fil 21460 |
This theorem is referenced by: filinn0 21474 filintn0 21475 alexsublem 21658 cfil3i 22875 iscmet3 22899 filnetlem4 31546 |
Copyright terms: Public domain | W3C validator |