Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinbas Structured version   Visualization version   GIF version

Theorem fiinbas 20567
 Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fiinbas
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . . . . . . . 8 (𝑥𝑦) ⊆ (𝑥𝑦)
2 eleq2 2677 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑧𝑤𝑧 ∈ (𝑥𝑦)))
3 sseq1 3589 . . . . . . . . . 10 (𝑤 = (𝑥𝑦) → (𝑤 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
42, 3anbi12d 743 . . . . . . . . 9 (𝑤 = (𝑥𝑦) → ((𝑧𝑤𝑤 ⊆ (𝑥𝑦)) ↔ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))))
54rspcev 3282 . . . . . . . 8 (((𝑥𝑦) ∈ 𝐵 ∧ (𝑧 ∈ (𝑥𝑦) ∧ (𝑥𝑦) ⊆ (𝑥𝑦))) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
61, 5mpanr2 716 . . . . . . 7 (((𝑥𝑦) ∈ 𝐵𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
76ralrimiva 2949 . . . . . 6 ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
87a1i 11 . . . . 5 (𝐵𝐶 → ((𝑥𝑦) ∈ 𝐵 → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
98ralimdv 2946 . . . 4 (𝐵𝐶 → (∀𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
109ralimdv 2946 . . 3 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵 → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
11 isbasis2g 20563 . . 3 (𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
1210, 11sylibrd 248 . 2 (𝐵𝐶 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵𝐵 ∈ TopBases))
1312imp 444 1 ((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  TopBasesctb 20520 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-pw 4110  df-uni 4373  df-bases 20522 This theorem is referenced by:  fibas  20592  qtopbaslem  22372  ontopbas  31597  isbasisrelowl  32382
 Copyright terms: Public domain W3C validator