MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss2 Structured version   Visualization version   GIF version

Theorem fgss2 21488
Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fgss2
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfg 21486 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
21adantr 480 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ (𝑋filGen𝐹))
32sseld 3567 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥𝐹𝑥 ∈ (𝑋filGen𝐹)))
4 ssel2 3563 . . . . . 6 (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐺))
5 elfg 21485 . . . . . . . 8 (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) ↔ (𝑥𝑋 ∧ ∃𝑦𝐺 𝑦𝑥)))
6 simpr 476 . . . . . . . 8 ((𝑥𝑋 ∧ ∃𝑦𝐺 𝑦𝑥) → ∃𝑦𝐺 𝑦𝑥)
75, 6syl6bi 242 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦𝐺 𝑦𝑥))
87adantl 481 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦𝐺 𝑦𝑥))
94, 8syl5 33 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐺 𝑦𝑥))
109expd 451 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥 ∈ (𝑋filGen𝐹) → ∃𝑦𝐺 𝑦𝑥)))
113, 10syl5d 71 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥𝐹 → ∃𝑦𝐺 𝑦𝑥)))
1211ralrimdv 2951 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
13 sseq2 3590 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
1413rexbidv 3034 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (∃𝑦𝐺 𝑦𝑥 ↔ ∃𝑦𝐺 𝑦𝑢))
1514rspcv 3278 . . . . . . . . . . 11 (𝑢𝐹 → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → ∃𝑦𝐺 𝑦𝑢))
1615adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → ∃𝑦𝐺 𝑦𝑢))
17 sstr 3576 . . . . . . . . . . . . . 14 ((𝑦𝑢𝑢𝑡) → 𝑦𝑡)
18 sseq1 3589 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → (𝑣𝑡𝑦𝑡))
1918rspcev 3282 . . . . . . . . . . . . . . . 16 ((𝑦𝐺𝑦𝑡) → ∃𝑣𝐺 𝑣𝑡)
2019adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺𝑦𝑡)) → ∃𝑣𝐺 𝑣𝑡)
2120a1d 25 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺𝑦𝑡)) → (𝑡𝑋 → ∃𝑣𝐺 𝑣𝑡))
2217, 21sylanr2 683 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺 ∧ (𝑦𝑢𝑢𝑡))) → (𝑡𝑋 → ∃𝑣𝐺 𝑣𝑡))
2322ancld 574 . . . . . . . . . . . 12 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺 ∧ (𝑦𝑢𝑢𝑡))) → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
2423exp45 640 . . . . . . . . . . 11 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (𝑦𝐺 → (𝑦𝑢 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡))))))
2524rexlimdv 3012 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∃𝑦𝐺 𝑦𝑢 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2616, 25syld 46 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2726impancom 455 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑢𝐹 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2827rexlimdv 3012 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (∃𝑢𝐹 𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡))))
2928com23 84 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡𝑋 → (∃𝑢𝐹 𝑢𝑡 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡))))
3029impd 446 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → ((𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡) → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
31 elfg 21485 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
3231adantr 480 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
3332adantr 480 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
34 elfg 21485 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3534adantl 481 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3635adantr 480 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3730, 33, 363imtr4d 282 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺)))
3837ssrdv 3574 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))
3938ex 449 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)))
4012, 39impbid 201 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wral 2896  wrex 2897  wss 3540  cfv 5804  (class class class)co 6549  fBascfbas 19555  filGencfg 19556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-fg 19565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator