Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7020
 Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 5808 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn4 6034 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
32anbi1i 727 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 263 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 6992 . . . 4 ran 𝐹 ∈ V
7 foeq3 6026 . . . . 5 (𝑥 = ran 𝐹 → (𝐹:𝐴onto𝑥𝐹:𝐴onto→ran 𝐹))
8 sseq1 3589 . . . . 5 (𝑥 = ran 𝐹 → (𝑥𝐵 ↔ ran 𝐹𝐵))
97, 8anbi12d 743 . . . 4 (𝑥 = ran 𝐹 → ((𝐹:𝐴onto𝑥𝑥𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵)))
106, 9spcev 3273 . . 3 ((𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵) → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
114, 10sylbi 206 . 2 (𝐹:𝐴𝐵 → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
12 fof 6028 . . . 4 (𝐹:𝐴onto𝑥𝐹:𝐴𝑥)
13 fss 5969 . . . 4 ((𝐹:𝐴𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1412, 13sylan 487 . . 3 ((𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1514exlimiv 1845 . 2 (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1611, 15impbii 198 1 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ran crn 5039   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049  df-f 5808  df-fo 5810 This theorem is referenced by:  f11o  7021
 Copyright terms: Public domain W3C validator