Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnaov Structured version   Visualization version   GIF version

Theorem ffnaov 39928
Description: An operation maps to a class to which all values belong, analogous to ffnov 6662. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ffnaov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnaov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnafv 39900 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶))
2 afveq2 39864 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = (𝐹'''⟨𝑥, 𝑦⟩))
3 df-aov 39847 . . . . . 6 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2662 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) )
54eleq1d 2672 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶))
65ralxp 5185 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)
76anbi2i 726 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
81, 7bitri 263 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cop 4131   × cxp 5036   Fn wfn 5799  wf 5800  '''cafv 39843   ((caov 39844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-dfat 39845  df-afv 39846  df-aov 39847
This theorem is referenced by:  faovcl  39929
  Copyright terms: Public domain W3C validator