Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcofo Structured version   Visualization version   GIF version

Theorem fcofo 6443
 Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)

Proof of Theorem fcofo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴𝐵)
2 ffvelrn 6265 . . . . 5 ((𝑆:𝐵𝐴𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
323ad2antl2 1217 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
4 simpl3 1059 . . . . . 6 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝐹𝑆) = ( I ↾ 𝐵))
54fveq1d 6105 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (( I ↾ 𝐵)‘𝑦))
6 fvco3 6185 . . . . . 6 ((𝑆:𝐵𝐴𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
763ad2antl2 1217 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
8 fvresi 6344 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
98adantl 481 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
105, 7, 93eqtr3rd 2653 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑆𝑦)))
11 fveq2 6103 . . . . . 6 (𝑥 = (𝑆𝑦) → (𝐹𝑥) = (𝐹‘(𝑆𝑦)))
1211eqeq2d 2620 . . . . 5 (𝑥 = (𝑆𝑦) → (𝑦 = (𝐹𝑥) ↔ 𝑦 = (𝐹‘(𝑆𝑦))))
1312rspcev 3282 . . . 4 (((𝑆𝑦) ∈ 𝐴𝑦 = (𝐹‘(𝑆𝑦))) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
143, 10, 13syl2anc 691 . . 3 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1514ralrimiva 2949 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
16 dffo3 6282 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
171, 15, 16sylanbrc 695 1 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   I cid 4948   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812 This theorem is referenced by:  fcof1od  6449
 Copyright terms: Public domain W3C validator