MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1oinvd Structured version   Visualization version   GIF version

Theorem fcof1oinvd 6448
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 6451. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
fcof1oinvd.f (𝜑𝐹:𝐴1-1-onto𝐵)
fcof1oinvd.g (𝜑𝐺:𝐵𝐴)
fcof1oinvd.b (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
Assertion
Ref Expression
fcof1oinvd (𝜑𝐹 = 𝐺)

Proof of Theorem fcof1oinvd
StepHypRef Expression
1 fcof1oinvd.b . . 3 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
21coeq2d 5206 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
3 coass 5571 . . 3 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
4 fcof1oinvd.f . . . . . 6 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ococnv1 6078 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
64, 5syl 17 . . . . 5 (𝜑 → (𝐹𝐹) = ( I ↾ 𝐴))
76coeq1d 5205 . . . 4 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
8 fcof1oinvd.g . . . . 5 (𝜑𝐺:𝐵𝐴)
9 fcoi2 5992 . . . . 5 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
108, 9syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
117, 10eqtrd 2644 . . 3 (𝜑 → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
123, 11syl5eqr 2658 . 2 (𝜑 → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
13 f1ocnv 6062 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
144, 13syl 17 . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
15 f1of 6050 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
1614, 15syl 17 . . 3 (𝜑𝐹:𝐵𝐴)
17 fcoi1 5991 . . 3 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1816, 17syl 17 . 2 (𝜑 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
192, 12, 183eqtr3rd 2653 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475   I cid 4948  ccnv 5037  cres 5040  ccom 5042  wf 5800  1-1-ontowf1o 5803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811
This theorem is referenced by:  2fcoidinvd  6450
  Copyright terms: Public domain W3C validator