Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs | Structured version Visualization version GIF version |
Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 8196. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
fcobij.1 | ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
fcobij.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
fcobij.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
fcobij.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
fcobijfs.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑆) |
fcobijfs.6 | ⊢ 𝑄 = (𝐺‘𝑂) |
fcobijfs.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑𝑚 𝑅) ∣ 𝑔 finSupp 𝑂} |
fcobijfs.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑𝑚 𝑅) ∣ ℎ finSupp 𝑄} |
Ref | Expression |
---|---|
fcobijfs | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcobijfs.7 | . . . 4 ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑𝑚 𝑅) ∣ 𝑔 finSupp 𝑂} | |
2 | breq1 4586 | . . . . 5 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
3 | 2 | cbvrabv 3172 | . . . 4 ⊢ {ℎ ∈ (𝑆 ↑𝑚 𝑅) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑆 ↑𝑚 𝑅) ∣ 𝑔 finSupp 𝑂} |
4 | 1, 3 | eqtr4i 2635 | . . 3 ⊢ 𝑋 = {ℎ ∈ (𝑆 ↑𝑚 𝑅) ∣ ℎ finSupp 𝑂} |
5 | fcobijfs.8 | . . 3 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑𝑚 𝑅) ∣ ℎ finSupp 𝑄} | |
6 | fcobijfs.6 | . . 3 ⊢ 𝑄 = (𝐺‘𝑂) | |
7 | f1oi 6086 | . . . 4 ⊢ ( I ↾ 𝑅):𝑅–1-1-onto→𝑅 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑅):𝑅–1-1-onto→𝑅) |
9 | fcobij.1 | . . 3 ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) | |
10 | fcobij.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
11 | elex 3185 | . . . 4 ⊢ (𝑅 ∈ 𝑈 → 𝑅 ∈ V) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
13 | fcobij.3 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
14 | elex 3185 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
16 | fcobij.4 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
17 | elex 3185 | . . . 4 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑇 ∈ V) |
19 | fcobijfs.5 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑆) | |
20 | 4, 5, 6, 8, 9, 12, 15, 12, 18, 19 | mapfien 8196 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌) |
21 | ssrab2 3650 | . . . . . . 7 ⊢ {𝑔 ∈ (𝑆 ↑𝑚 𝑅) ∣ 𝑔 finSupp 𝑂} ⊆ (𝑆 ↑𝑚 𝑅) | |
22 | 1, 21 | eqsstri 3598 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑆 ↑𝑚 𝑅) |
23 | 22 | sseli 3564 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑆 ↑𝑚 𝑅)) |
24 | coass 5571 | . . . . . 6 ⊢ ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) | |
25 | f1of 6050 | . . . . . . . . 9 ⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) | |
26 | 9, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
27 | elmapi 7765 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑆 ↑𝑚 𝑅) → 𝑓:𝑅⟶𝑆) | |
28 | fco 5971 | . . . . . . . 8 ⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) | |
29 | 26, 27, 28 | syl2an 493 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑𝑚 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
30 | fcoi1 5991 | . . . . . . 7 ⊢ ((𝐺 ∘ 𝑓):𝑅⟶𝑇 → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) | |
31 | 29, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑𝑚 𝑅)) → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) |
32 | 24, 31 | syl5eqr 2658 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑𝑚 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
33 | 23, 32 | sylan2 490 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
34 | 33 | mpteq2dva 4672 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓))) |
35 | f1oeq1 6040 | . . 3 ⊢ ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)) → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) | |
36 | 34, 35 | syl 17 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) |
37 | 20, 36 | mpbid 221 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 class class class wbr 4583 ↦ cmpt 4643 I cid 4948 ↾ cres 5040 ∘ ccom 5042 ⟶wf 5800 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 finSupp cfsupp 8158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-1o 7447 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-fin 7845 df-fsupp 8159 |
This theorem is referenced by: eulerpartgbij 29761 |
Copyright terms: Public domain | W3C validator |