Step | Hyp | Ref
| Expression |
1 | | relcnv 5422 |
. 2
⊢ Rel ◡(𝐹 ↾ 𝐴) |
2 | | relres 5346 |
. 2
⊢ Rel
(◡𝐹 ↾ 𝐵) |
3 | | opelf 5978 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
4 | 3 | simpld 474 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → 𝑥 ∈ 𝐴) |
5 | 4 | ex 449 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71d 664 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ 𝐴))) |
7 | | vex 3176 |
. . . . . 6
⊢ 𝑦 ∈ V |
8 | | vex 3176 |
. . . . . 6
⊢ 𝑥 ∈ V |
9 | 7, 8 | opelcnv 5226 |
. . . . 5
⊢
(〈𝑦, 𝑥〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ (𝐹 ↾ 𝐴)) |
10 | 7 | opelres 5322 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ (𝐹 ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ 𝐴)) |
11 | 9, 10 | bitri 263 |
. . . 4
⊢
(〈𝑦, 𝑥〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑥 ∈ 𝐴)) |
12 | 6, 11 | syl6bbr 277 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ ◡(𝐹 ↾ 𝐴))) |
13 | 3 | simprd 478 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ 𝐵) |
14 | 13 | ex 449 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
15 | 14 | pm4.71d 664 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑦 ∈ 𝐵))) |
16 | 8 | opelres 5322 |
. . . . 5
⊢
(〈𝑦, 𝑥〉 ∈ (◡𝐹 ↾ 𝐵) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝐹 ∧ 𝑦 ∈ 𝐵)) |
17 | 7, 8 | opelcnv 5226 |
. . . . . 6
⊢
(〈𝑦, 𝑥〉 ∈ ◡𝐹 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) |
18 | 17 | anbi1i 727 |
. . . . 5
⊢
((〈𝑦, 𝑥〉 ∈ ◡𝐹 ∧ 𝑦 ∈ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑦 ∈ 𝐵)) |
19 | 16, 18 | bitri 263 |
. . . 4
⊢
(〈𝑦, 𝑥〉 ∈ (◡𝐹 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 𝑦 ∈ 𝐵)) |
20 | 15, 19 | syl6bbr 277 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ (◡𝐹 ↾ 𝐵))) |
21 | 12, 20 | bitr3d 269 |
. 2
⊢ (𝐹:𝐴⟶𝐵 → (〈𝑦, 𝑥〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ 〈𝑦, 𝑥〉 ∈ (◡𝐹 ↾ 𝐵))) |
22 | 1, 2, 21 | eqrelrdv 5139 |
1
⊢ (𝐹:𝐴⟶𝐵 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ 𝐵)) |