Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Visualization version   GIF version

Theorem fclsopn 21628
 Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝑋,𝑠

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 21627 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
2 filn0 21476 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
32adantl 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅)
4 r19.2z 4012 . . . . . 6 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
54ex 449 . . . . 5 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
63, 5syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
7 topontop 20541 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
87ad2antrr 758 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
9 filelss 21466 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
109adantll 746 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠𝑋)
11 toponuni 20542 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 758 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
1310, 12sseqtrd 3604 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠 𝐽)
14 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
1514clsss3 20673 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
168, 13, 15syl2anc 691 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
1716, 12sseqtr4d 3605 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋)
1817sseld 3567 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
1918rexlimdva 3013 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
206, 19syld 46 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
2120pm4.71rd 665 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
227ad3antrrr 762 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
2313adantlr 747 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑠 𝐽)
24 simplr 788 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴𝑋)
2511ad3antrrr 762 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
2624, 25eleqtrd 2690 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴 𝐽)
2714elcls 20687 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2822, 23, 26, 27syl3anc 1318 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2928ralbidva 2968 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
30 ralcom 3079 . . . . 5 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅))
31 r19.21v 2943 . . . . . 6 (∀𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3231ralbii 2963 . . . . 5 (∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3330, 32bitri 263 . . . 4 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3429, 33syl6bb 275 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
3534pm5.32da 671 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
361, 21, 353bitrd 293 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ∪ cuni 4372  ‘cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518  clsccl 20632  Filcfil 21459   fClus cfcls 21550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-fil 21460  df-fcls 21555 This theorem is referenced by:  fclsopni  21629  fclselbas  21630  fclsnei  21633  fclsbas  21635  fclsss1  21636  fclsrest  21638  fclscf  21639  isfcf  21648
 Copyright terms: Public domain W3C validator