Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsneii Structured version   Visualization version   GIF version

Theorem fclsneii 21631
 Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsneii ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)

Proof of Theorem fclsneii
StepHypRef Expression
1 simp1 1054 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ (𝐽 fClus 𝐹))
2 fclstop 21625 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐽 ∈ Top)
4 simp2 1055 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 ∈ ((nei‘𝐽)‘{𝐴}))
5 eqid 2610 . . . . . 6 𝐽 = 𝐽
65neii1 20720 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 𝐽)
73, 4, 6syl2anc 691 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 𝐽)
85ntrss2 20671 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
93, 7, 8syl2anc 691 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
10 ssrin 3800 . . 3 (((int‘𝐽)‘𝑁) ⊆ 𝑁 → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆))
119, 10syl 17 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆))
125ntropn 20663 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
133, 7, 12syl2anc 691 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
145fclselbas 21630 . . . . . . . 8 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
151, 14syl 17 . . . . . . 7 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 𝐽)
1615snssd 4281 . . . . . 6 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ 𝐽)
175neiint 20718 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
183, 16, 7, 17syl3anc 1318 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
194, 18mpbid 221 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ ((int‘𝐽)‘𝑁))
20 snssg 4268 . . . . 5 (𝐴 𝐽 → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2115, 20syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2219, 21mpbird 246 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ ((int‘𝐽)‘𝑁))
23 simp3 1056 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑆𝐹)
24 fclsopni 21629 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (((int‘𝐽)‘𝑁) ∈ 𝐽𝐴 ∈ ((int‘𝐽)‘𝑁) ∧ 𝑆𝐹)) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
251, 13, 22, 23, 24syl13anc 1320 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
26 ssn0 3928 . 2 (((((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆) ∧ (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) → (𝑁𝑆) ≠ ∅)
2711, 25, 26syl2anc 691 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   ∈ wcel 1977   ≠ wne 2780   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  ∪ cuni 4372  ‘cfv 5804  (class class class)co 6549  Topctop 20517  intcnt 20631  neicnei 20711   fClus cfcls 21550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-fil 21460  df-fcls 21555 This theorem is referenced by:  fclsnei  21633  fclsfnflim  21641
 Copyright terms: Public domain W3C validator