Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbncp | Structured version Visualization version GIF version |
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbncp | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelfb 21445 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
3 | fbasssin 21450 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) | |
4 | disjdif 3992 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
5 | 4 | sseq2i 3593 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) ↔ 𝑥 ⊆ ∅) |
6 | ss0 3926 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
7 | 5, 6 | sylbi 206 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → 𝑥 = ∅) |
8 | eleq1 2676 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
9 | 8 | biimpac 502 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 = ∅) → ∅ ∈ 𝐹) |
10 | 7, 9 | sylan2 490 | . . . . 5 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) → ∅ ∈ 𝐹) |
11 | 10 | rexlimiva 3010 | . . . 4 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → ∅ ∈ 𝐹) |
12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∅ ∈ 𝐹) |
13 | 12 | 3expia 1259 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐵 ∖ 𝐴) ∈ 𝐹 → ∅ ∈ 𝐹)) |
14 | 2, 13 | mtod 188 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ∖ cdif 3537 ∩ cin 3539 ⊆ wss 3540 ∅c0 3874 ‘cfv 5804 fBascfbas 19555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-fbas 19564 |
This theorem is referenced by: filcon 21497 fgtr 21504 ufilb 21520 ufilmax 21521 ufilen 21544 flimrest 21597 fclsrest 21638 cfilres 22902 relcmpcmet 22923 |
Copyright terms: Public domain | W3C validator |