Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > faovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation, analogous to fovcl 6663. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
faovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
faovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | faovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnaov 39928 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶)) | |
3 | 2 | simprbi 479 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 |
5 | eqidd 2611 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐹 = 𝐹) | |
6 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | eqidd 2611 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑦 = 𝑦) | |
8 | 5, 6, 7 | aoveq123d 39907 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦)) = ((𝐴𝐹𝑦)) ) |
9 | 8 | eleq1d 2672 | . . 3 ⊢ (𝑥 = 𝐴 → ( ((𝑥𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝑦)) ∈ 𝐶)) |
10 | eqidd 2611 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐹 = 𝐹) | |
11 | eqidd 2611 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐴) | |
12 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
13 | 10, 11, 12 | aoveq123d 39907 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦)) = ((𝐴𝐹𝐵)) ) |
14 | 13 | eleq1d 2672 | . . 3 ⊢ (𝑦 = 𝐵 → ( ((𝐴𝐹𝑦)) ∈ 𝐶 ↔ ((𝐴𝐹𝐵)) ∈ 𝐶)) |
15 | 9, 14 | rspc2v 3293 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ((𝑥𝐹𝑦)) ∈ 𝐶 → ((𝐴𝐹𝐵)) ∈ 𝐶)) |
16 | 4, 15 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 × cxp 5036 Fn wfn 5799 ⟶wf 5800 ((caov 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-dfat 39845 df-afv 39846 df-aov 39847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |