Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1orn | Structured version Visualization version GIF version |
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1orn | ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 6055 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹)) | |
2 | eqid 2610 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
3 | df-3an 1033 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹) ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | mpbiran2 956 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
5 | 1, 4 | bitri 263 | 1 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ◡ccnv 5037 ran crn 5039 Fun wfun 5798 Fn wfn 5799 –1-1-onto→wf1o 5803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-in 3547 df-ss 3554 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 |
This theorem is referenced by: f1f1orn 6061 infdifsn 8437 efopnlem2 24203 |
Copyright terms: Public domain | W3C validator |