Proof of Theorem f1omvdco2
Step | Hyp | Ref
| Expression |
1 | | excxor 1461 |
. . 3
⊢ ((dom
(𝐹 ∖ I ) ⊆
𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) ↔ ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋))) |
2 | | coass 5571 |
. . . . . . . . . . . 12
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) |
3 | | f1ococnv1 6078 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
4 | 3 | coeq1d 5205 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1-onto→𝐴 → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
5 | | f1of 6050 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺:𝐴⟶𝐴) |
6 | | fcoi2 5992 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
8 | 4, 7 | sylan9eq 2664 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
9 | 2, 8 | syl5eqr 2658 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
10 | 9 | difeq1d 3689 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = (𝐺 ∖ I )) |
11 | 10 | dmeqd 5248 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = dom (𝐺 ∖ I )) |
12 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) = dom (𝐺 ∖ I )) |
13 | | mvdco 17688 |
. . . . . . . . 9
⊢ dom
((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) ⊆ (dom (◡𝐹 ∖ I ) ∪ dom ((𝐹 ∘ 𝐺) ∖ I )) |
14 | | f1omvdcnv 17687 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
15 | 14 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
16 | | simprl 790 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋) |
17 | 15, 16 | eqsstrd 3602 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐹 ∖ I ) ⊆ 𝑋) |
18 | | simprr 792 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |
19 | 17, 18 | unssd 3751 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → (dom (◡𝐹 ∖ I ) ∪ dom ((𝐹 ∘ 𝐺) ∖ I )) ⊆ 𝑋) |
20 | 13, 19 | syl5ss 3579 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((◡𝐹 ∘ (𝐹 ∘ 𝐺)) ∖ I ) ⊆ 𝑋) |
21 | 12, 20 | eqsstr3d 3603 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋) |
22 | 21 | expr 641 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐺 ∖ I ) ⊆ 𝑋)) |
23 | 22 | con3d 147 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐹 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
24 | 23 | expimpd 627 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
25 | | coass 5571 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) |
26 | | f1ococnv2 6076 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐴)) |
27 | 26 | coeq2d 5206 |
. . . . . . . . . . . . . 14
⊢ (𝐺:𝐴–1-1-onto→𝐴 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ 𝐴))) |
28 | | f1of 6050 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) |
29 | | fcoi1 5991 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴⟶𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
31 | 27, 30 | sylan9eqr 2666 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = 𝐹) |
32 | 25, 31 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = 𝐹) |
33 | 32 | difeq1d 3689 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = (𝐹 ∖ I )) |
34 | 33 | dmeqd 5248 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = dom (𝐹 ∖ I )) |
35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) = dom (𝐹 ∖ I )) |
36 | | mvdco 17688 |
. . . . . . . . . 10
⊢ dom
(((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) ⊆ (dom ((𝐹 ∘ 𝐺) ∖ I ) ∪ dom (◡𝐺 ∖ I )) |
37 | | simprr 792 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |
38 | | f1omvdcnv 17687 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–1-1-onto→𝐴 → dom (◡𝐺 ∖ I ) = dom (𝐺 ∖ I )) |
39 | 38 | ad2antlr 759 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐺 ∖ I ) = dom (𝐺 ∖ I )) |
40 | | simprl 790 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐺 ∖ I ) ⊆ 𝑋) |
41 | 39, 40 | eqsstrd 3602 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (◡𝐺 ∖ I ) ⊆ 𝑋) |
42 | 37, 41 | unssd 3751 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ∪ dom (◡𝐺 ∖ I )) ⊆ 𝑋) |
43 | 36, 42 | syl5ss 3579 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (((𝐹 ∘ 𝐺) ∘ ◡𝐺) ∖ I ) ⊆ 𝑋) |
44 | 35, 43 | eqsstr3d 3603 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) → dom (𝐹 ∖ I ) ⊆ 𝑋) |
45 | 44 | expr 641 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋 → dom (𝐹 ∖ I ) ⊆ 𝑋)) |
46 | 45 | con3d 147 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
47 | 46 | expimpd 627 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐹 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
48 | 47 | ancomsd 469 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
49 | 24, 48 | jaod 394 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (((dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom (𝐺 ∖ I ) ⊆ 𝑋) ∨ (¬ dom (𝐹 ∖ I ) ⊆ 𝑋 ∧ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
50 | 1, 49 | syl5bi 231 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋)) |
51 | 50 | 3impia 1253 |
1
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) |