MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exss Structured version   Visualization version   GIF version

Theorem exss 4858
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
exss (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 2905 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21neeq1i 2846 . . 3 ({𝑥𝐴𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
3 rabn0 3912 . . 3 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
4 n0 3890 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
52, 3, 43bitr3i 289 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
6 vex 3176 . . . . . 6 𝑧 ∈ V
76snss 4259 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ {𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
8 ssab2 3649 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
9 sstr2 3575 . . . . . 6 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴 → {𝑧} ⊆ 𝐴))
108, 9mpi 20 . . . . 5 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
117, 10sylbi 206 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
12 simpr 476 . . . . . . . 8 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
13 equsb1 2356 . . . . . . . . 9 [𝑧 / 𝑥]𝑥 = 𝑧
14 velsn 4141 . . . . . . . . . 10 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
1514sbbii 1874 . . . . . . . . 9 ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ↔ [𝑧 / 𝑥]𝑥 = 𝑧)
1613, 15mpbir 220 . . . . . . . 8 [𝑧 / 𝑥]𝑥 ∈ {𝑧}
1712, 16jctil 558 . . . . . . 7 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
18 df-clab 2597 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑧 / 𝑥](𝑥𝐴𝜑))
19 sban 2387 . . . . . . . 8 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
2018, 19bitri 263 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
21 df-rab 2905 . . . . . . . . 9 {𝑥 ∈ {𝑧} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)}
2221eleq2i 2680 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)})
23 df-clab 2597 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑))
24 sban 2387 . . . . . . . . 9 ([𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2523, 24bitri 263 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2622, 25bitri 263 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2717, 20, 263imtr4i 280 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → 𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
28 ne0i 3880 . . . . . 6 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} → {𝑥 ∈ {𝑧} ∣ 𝜑} ≠ ∅)
2927, 28syl 17 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑥 ∈ {𝑧} ∣ 𝜑} ≠ ∅)
30 rabn0 3912 . . . . 5 ({𝑥 ∈ {𝑧} ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ {𝑧}𝜑)
3129, 30sylib 207 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑥 ∈ {𝑧}𝜑)
32 snex 4835 . . . . 5 {𝑧} ∈ V
33 sseq1 3589 . . . . . 6 (𝑦 = {𝑧} → (𝑦𝐴 ↔ {𝑧} ⊆ 𝐴))
34 rexeq 3116 . . . . . 6 (𝑦 = {𝑧} → (∃𝑥𝑦 𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑))
3533, 34anbi12d 743 . . . . 5 (𝑦 = {𝑧} → ((𝑦𝐴 ∧ ∃𝑥𝑦 𝜑) ↔ ({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑)))
3632, 35spcev 3273 . . . 4 (({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑) → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3711, 31, 36syl2anc 691 . . 3 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3837exlimiv 1845 . 2 (∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
395, 38sylbi 206 1 (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  [wsb 1867  wcel 1977  {cab 2596  wne 2780  wrex 2897  {crab 2900  wss 3540  c0 3874  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator