Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exrot3 | Structured version Visualization version GIF version |
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 2031 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
2 | excom 2029 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
3 | 1, 2 | bitri 263 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-11 2021 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: opabn0 4931 dmoprab 6639 rnoprab 6641 xpassen 7939 cnvoprab 28886 elima4 30924 brimg 31214 ellines 31429 |
Copyright terms: Public domain | W3C validator |