Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmhm Structured version   Visualization version   GIF version

Theorem expmhm 19634
 Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
expmhm.1 𝑁 = (ℂflds0)
expmhm.2 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
expmhm (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem expmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcl 12740 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝐴𝑥) ∈ ℂ)
2 eqid 2610 . . 3 (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) = (𝑥 ∈ ℕ0 ↦ (𝐴𝑥))
31, 2fmptd 6292 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ)
4 expadd 12764 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
543expb 1258 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
6 nn0addcl 11205 . . . . . 6 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 + 𝑧) ∈ ℕ0)
76adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑦 + 𝑧) ∈ ℕ0)
8 oveq2 6557 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
9 ovex 6577 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
108, 2, 9fvmpt 6191 . . . . 5 ((𝑦 + 𝑧) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
117, 10syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 6557 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 6577 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 2, 13fvmpt 6191 . . . . . 6 (𝑦 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 6557 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 6577 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 2, 16fvmpt 6191 . . . . . 6 (𝑧 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 6568 . . . . 5 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
205, 11, 193eqtr4d 2654 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 2954 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)))
22 0nn0 11184 . . . 4 0 ∈ ℕ0
23 oveq2 6557 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
24 ovex 6577 . . . . 5 (𝐴↑0) ∈ V
2523, 2, 24fvmpt 6191 . . . 4 (0 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0))
2622, 25ax-mp 5 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = (𝐴↑0)
27 exp0 12726 . . 3 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2826, 27syl5eq 2656 . 2 (𝐴 ∈ ℂ → ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)
29 nn0subm 19620 . . . . 5 0 ∈ (SubMnd‘ℂfld)
30 expmhm.1 . . . . . 6 𝑁 = (ℂflds0)
3130submmnd 17177 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 𝑁 ∈ Mnd)
3229, 31ax-mp 5 . . . 4 𝑁 ∈ Mnd
33 cnring 19587 . . . . 5 fld ∈ Ring
34 expmhm.2 . . . . . 6 𝑀 = (mulGrp‘ℂfld)
3534ringmgp 18376 . . . . 5 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3633, 35ax-mp 5 . . . 4 𝑀 ∈ Mnd
3732, 36pm3.2i 470 . . 3 (𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd)
3830submbas 17178 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘𝑁))
3929, 38ax-mp 5 . . . 4 0 = (Base‘𝑁)
40 cnfldbas 19571 . . . . 5 ℂ = (Base‘ℂfld)
4134, 40mgpbas 18318 . . . 4 ℂ = (Base‘𝑀)
42 cnfldadd 19572 . . . . . 6 + = (+g‘ℂfld)
4330, 42ressplusg 15818 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g𝑁))
4429, 43ax-mp 5 . . . 4 + = (+g𝑁)
45 cnfldmul 19573 . . . . 5 · = (.r‘ℂfld)
4634, 45mgpplusg 18316 . . . 4 · = (+g𝑀)
47 cnfld0 19589 . . . . . 6 0 = (0g‘ℂfld)
4830, 47subm0 17179 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g𝑁))
4929, 48ax-mp 5 . . . 4 0 = (0g𝑁)
50 cnfld1 19590 . . . . 5 1 = (1r‘ℂfld)
5134, 50ringidval 18326 . . . 4 1 = (0g𝑀)
5239, 41, 44, 46, 49, 51ismhm 17160 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑁 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1)))
5337, 52mpbiran 955 . 2 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀) ↔ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥)):ℕ0⟶ℂ ∧ ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘𝑧)) ∧ ((𝑥 ∈ ℕ0 ↦ (𝐴𝑥))‘0) = 1))
543, 21, 28, 53syl3anbrc 1239 1 (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴𝑥)) ∈ (𝑁 MndHom 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℕ0cn0 11169  ↑cexp 12722  Basecbs 15695   ↾s cress 15696  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117   MndHom cmhm 17156  SubMndcsubmnd 17157  mulGrpcmgp 18312  Ringcrg 18370  ℂfldccnfld 19567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-exp 12723  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-cnfld 19568 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator